From b2f04c1dfa59f079808d46722663294ea434b23e Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Mon, 29 Apr 2024 20:53:47 +0200 Subject: [PATCH] Update cauchyRiemann.lean --- nevanlinna/cauchyRiemann.lean | 79 ++++++----------------------------- 1 file changed, 12 insertions(+), 67 deletions(-) diff --git a/nevanlinna/cauchyRiemann.lean b/nevanlinna/cauchyRiemann.lean index c74ff06..ba521d0 100644 --- a/nevanlinna/cauchyRiemann.lean +++ b/nevanlinna/cauchyRiemann.lean @@ -22,74 +22,19 @@ theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z) ∧ (lineDeriv ℝ (Complex.reCLM ∘ f) z Complex.I = -lineDeriv ℝ (Complex.imCLM ∘ f) z 1) := by - -- Proof starts here intro h - have t₀₀ : DifferentiableAt ℝ f z := by - exact h.restrictScalars ℝ - have t₀₁ : DifferentiableAt ℝ Complex.reCLM (f z) := by - have : ∀ w, DifferentiableAt ℝ Complex.reCLM w := by - intro w - refine Differentiable.differentiableAt ?h - exact ContinuousLinearMap.differentiable (Complex.reCLM : ℂ →L[ℝ] ℝ) - exact this (f z) - have t₁ : DifferentiableAt ℝ (Complex.reCLM ∘ f) z := by - apply t₀₁.comp - exact t₀₀ - have t₂ : lineDeriv ℝ (Complex.reCLM ∘ f) z 1 = (fderiv ℝ (Complex.reCLM ∘ f) z) 1 := by - apply DifferentiableAt.lineDeriv_eq_fderiv - exact t₁ - have s₀₀ : DifferentiableAt ℝ f z := by - exact h.restrictScalars ℝ - have s₀₁ : DifferentiableAt ℝ Complex.imCLM (f z) := by - have : ∀ w, DifferentiableAt ℝ Complex.imCLM w := by - intro w - apply Differentiable.differentiableAt - exact ContinuousLinearMap.differentiable (Complex.imCLM : ℂ →L[ℝ] ℝ) - exact this (f z) - have s₁ : DifferentiableAt ℝ (Complex.im ∘ f) z := by - apply s₀₁.comp - exact s₀₀ - have s₂ : lineDeriv ℝ (Complex.imCLM ∘ f) z Complex.I = (fderiv ℝ (Complex.imCLM ∘ f) z) Complex.I := by - apply DifferentiableAt.lineDeriv_eq_fderiv - exact s₁ - - constructor - · rw [t₂, s₂] - rw [fderiv.comp, fderiv.comp] + have ContinuousLinearMap.comp_lineDeriv : ∀ w : ℂ, ∀ l : ℂ →L[ℝ] ℝ, lineDeriv ℝ (l ∘ f) z w = l ((fderiv ℝ f z) w) := by + intro w l + rw [DifferentiableAt.lineDeriv_eq_fderiv] + rw [fderiv.comp] simp - rw [CauchyRiemann₁ h] - rw [Complex.I_mul] - -- DifferentiableAt ℝ Complex.im (f z) - exact Complex.imCLM.differentiableAt + fun_prop + exact h.restrictScalars ℝ + apply (ContinuousLinearMap.differentiableAt l).comp + exact h.restrictScalars ℝ - -- DifferentiableAt ℝ f z - exact t₀₀ - - -- DifferentiableAt ℝ Complex.re (f z) - exact Complex.reCLM.differentiableAt - - -- DifferentiableAt ℝ f z - exact t₀₀ - · have r₂ : lineDeriv ℝ (Complex.reCLM ∘ f) z Complex.I = (fderiv ℝ (Complex.reCLM ∘ f) z) Complex.I := by - apply DifferentiableAt.lineDeriv_eq_fderiv - exact t₁ - have p₂ : lineDeriv ℝ (Complex.imCLM ∘ f) z 1 = (fderiv ℝ (Complex.imCLM ∘ f) z) 1 := by - apply DifferentiableAt.lineDeriv_eq_fderiv - exact s₁ - rw [r₂, p₂] - rw [fderiv.comp, fderiv.comp] - simp - rw [CauchyRiemann₁ h] - rw [Complex.I_mul] - -- DifferentiableAt ℝ Complex.im (f z) - exact Complex.imCLM.differentiableAt - - -- DifferentiableAt ℝ f z - exact t₀₀ - - -- DifferentiableAt ℝ Complex.re (f z) - exact Complex.reCLM.differentiableAt - - -- DifferentiableAt ℝ f z - exact t₀₀ + repeat + rw [ContinuousLinearMap.comp_lineDeriv] + rw [CauchyRiemann₁ h, Complex.I_mul] + simp