Big cleanup
This commit is contained in:
parent
a1910c3a72
commit
b26256d84e
|
@ -1,5 +1,6 @@
|
|||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Complex.RealDeriv
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
variable {z : ℂ} {f : ℂ → ℂ}
|
||||
|
||||
|
@ -41,3 +42,23 @@ theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z)
|
|||
rw [ContinuousLinearMap.comp_lineDeriv]
|
||||
rw [CauchyRiemann₁ h, Complex.I_mul]
|
||||
simp
|
||||
|
||||
|
||||
theorem CauchyRiemann₄ {f : ℂ → ℂ} : (Differentiable ℂ f)
|
||||
→ Real.partialDeriv Complex.I f = Complex.I • Real.partialDeriv 1 f := by
|
||||
intro h
|
||||
unfold Real.partialDeriv
|
||||
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f w) Complex.I 1]
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
|
|
|
@ -8,25 +8,6 @@ import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
|||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.partialDeriv
|
||||
|
||||
theorem CauchyRiemann₄ {f : ℂ → ℂ} : (Differentiable ℂ f)
|
||||
→ Real.partialDeriv Complex.I f = Complex.I • Real.partialDeriv 1 f := by
|
||||
intro h
|
||||
unfold Real.partialDeriv
|
||||
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f w) Complex.I 1]
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
|
||||
|
||||
noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by
|
||||
intro f
|
||||
|
@ -41,37 +22,6 @@ def Harmonic (f : ℂ → ℂ) : Prop :=
|
|||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||
|
||||
|
||||
lemma derivSymm (f : ℂ → ℂ) (hf : ContDiff ℝ 2 f) :
|
||||
∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by
|
||||
intro z a b
|
||||
|
||||
let f' := fderiv ℝ f
|
||||
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
|
||||
have h : Differentiable ℝ f := by
|
||||
exact (contDiff_succ_iff_fderiv.1 hf).left
|
||||
exact fun y => DifferentiableAt.hasFDerivAt (h y)
|
||||
|
||||
let f'' := (fderiv ℝ f' z)
|
||||
have h₁ : HasFDerivAt f' f'' z := by
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
let A := (contDiff_succ_iff_fderiv.1 hf).right
|
||||
let B := (contDiff_succ_iff_fderiv.1 A).left
|
||||
simp at B
|
||||
exact B z
|
||||
|
||||
let A := second_derivative_symmetric h₀ h₁ a b
|
||||
dsimp [f'', f'] at A
|
||||
apply A
|
||||
|
||||
|
||||
lemma l₂ {f : ℂ → ℂ} (hf : ContDiff ℝ 2 f) (z a b : ℂ) :
|
||||
fderiv ℝ (fderiv ℝ f) z b a = fderiv ℝ (fun w ↦ fderiv ℝ f w a) z b := by
|
||||
rw [fderiv_clm_apply]
|
||||
· simp
|
||||
· exact (contDiff_succ_iff_fderiv.1 hf).2.differentiable le_rfl z
|
||||
· simp
|
||||
|
||||
|
||||
theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic f := by
|
||||
|
||||
|
|
|
@ -5,13 +5,13 @@ import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
|||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Comp
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Linear
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
|
||||
|
||||
noncomputable def Real.partialDeriv : ℂ → (ℂ → ℂ) → (ℂ → ℂ) := by
|
||||
intro v
|
||||
intro f
|
||||
exact fun w ↦ (fderiv ℝ f w) v
|
||||
noncomputable def Real.partialDeriv : ℂ → (ℂ → ℂ) → (ℂ → ℂ) :=
|
||||
fun v ↦ (fun f ↦ (fun w ↦ fderiv ℝ f w v))
|
||||
|
||||
|
||||
theorem partialDeriv_smul {f : ℂ → ℂ} {a v : ℂ} (h : Differentiable ℝ f) : Real.partialDeriv v (a • f) = a • Real.partialDeriv v f := by
|
||||
|
@ -26,6 +26,30 @@ theorem partialDeriv_smul {f : ℂ → ℂ } {a v : ℂ} (h : Differentiable ℝ
|
|||
rw [fderiv_const_smul (h w)]
|
||||
|
||||
|
||||
theorem partialDeriv_add {f₁ f₂ : ℂ → ℂ} {v : ℂ} (h₁ : Differentiable ℝ f₁) (h₂ : Differentiable ℝ f₂) : Real.partialDeriv v (f₁ + f₂) = (Real.partialDeriv v f₁) + (Real.partialDeriv v f₂) := by
|
||||
unfold Real.partialDeriv
|
||||
|
||||
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||||
rw [this]
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
left
|
||||
rw [fderiv_add (h₁ w) (h₂ w)]
|
||||
|
||||
|
||||
theorem partialDeriv_compLin {f : ℂ → ℂ} {l : ℂ →L[ℝ] ℂ} {v : ℂ} (h : Differentiable ℝ f) : Real.partialDeriv v (l ∘ f) = l ∘ Real.partialDeriv v f := by
|
||||
unfold Real.partialDeriv
|
||||
|
||||
conv =>
|
||||
left
|
||||
intro w
|
||||
left
|
||||
rw [fderiv.comp w (ContinuousLinearMap.differentiableAt l) (h w)]
|
||||
simp
|
||||
rfl
|
||||
|
||||
|
||||
theorem partialDeriv_contDiff {n : ℕ} {f : ℂ → ℂ} (h : ContDiff ℝ (n + 1) f) : ∀ v : ℂ, ContDiff ℝ n (Real.partialDeriv v f) := by
|
||||
unfold Real.partialDeriv
|
||||
intro v
|
||||
|
@ -44,50 +68,38 @@ theorem partialDeriv_contDiff {n : ℕ} {f : ℂ → ℂ} (h : ContDiff ℝ (n +
|
|||
exact contDiff_const
|
||||
|
||||
|
||||
lemma l₂ {f : ℂ → ℂ} (hf : ContDiff ℝ 2 f) (z a b : ℂ) :
|
||||
fderiv ℝ (fderiv ℝ f) z b a = fderiv ℝ (fun w ↦ fderiv ℝ f w a) z b := by
|
||||
lemma partialDeriv_fderiv {f : ℂ → ℂ} (hf : ContDiff ℝ 2 f) (z a b : ℂ) :
|
||||
fderiv ℝ (fderiv ℝ f) z b a = Real.partialDeriv b (Real.partialDeriv a f) z := by
|
||||
|
||||
unfold Real.partialDeriv
|
||||
rw [fderiv_clm_apply]
|
||||
· simp
|
||||
· exact (contDiff_succ_iff_fderiv.1 hf).2.differentiable le_rfl z
|
||||
· simp
|
||||
|
||||
|
||||
lemma derivSymm (f : ℂ → ℂ) (hf : ContDiff ℝ 2 f) :
|
||||
∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by
|
||||
intro z a b
|
||||
|
||||
let f' := fderiv ℝ f
|
||||
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
|
||||
have h : Differentiable ℝ f := by
|
||||
exact (contDiff_succ_iff_fderiv.1 hf).left
|
||||
exact fun y => DifferentiableAt.hasFDerivAt (h y)
|
||||
|
||||
let f'' := (fderiv ℝ f' z)
|
||||
have h₁ : HasFDerivAt f' f'' z := by
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
let A := (contDiff_succ_iff_fderiv.1 hf).right
|
||||
let B := (contDiff_succ_iff_fderiv.1 A).left
|
||||
simp at B
|
||||
exact B z
|
||||
|
||||
let A := second_derivative_symmetric h₀ h₁ a b
|
||||
dsimp [f'', f'] at A
|
||||
apply A
|
||||
|
||||
|
||||
theorem partialDeriv_comm {f : ℂ → ℂ} (h : ContDiff ℝ 2 f) :
|
||||
∀ v₁ v₂ : ℂ, Real.partialDeriv v₁ (Real.partialDeriv v₂ f) = Real.partialDeriv v₂ (Real.partialDeriv v₁ f) := by
|
||||
|
||||
intro v₁ v₂
|
||||
unfold Real.partialDeriv
|
||||
funext z
|
||||
|
||||
conv =>
|
||||
left
|
||||
rw [← l₂ h z v₂ v₁]
|
||||
have derivSymm :
|
||||
(fderiv ℝ (fun w => fderiv ℝ f w) z) v₁ v₂ = (fderiv ℝ (fun w => fderiv ℝ f w) z) v₂ v₁ := by
|
||||
|
||||
rw [derivSymm f h z v₁ v₂]
|
||||
let f' := fderiv ℝ f
|
||||
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
|
||||
intro y
|
||||
exact DifferentiableAt.hasFDerivAt ((h.differentiable one_le_two) y)
|
||||
|
||||
conv =>
|
||||
left
|
||||
rw [l₂ h z v₁ v₂]
|
||||
let f'' := (fderiv ℝ f' z)
|
||||
have h₁ : HasFDerivAt f' f'' z := by
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
apply (contDiff_succ_iff_fderiv.1 h).right.differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
|
||||
apply second_derivative_symmetric h₀ h₁ v₁ v₂
|
||||
|
||||
|
||||
rw [← partialDeriv_fderiv h z v₂ v₁]
|
||||
rw [derivSymm]
|
||||
rw [partialDeriv_fderiv h z v₁ v₂]
|
||||
|
|
Loading…
Reference in New Issue