Update analyticOn_zeroSet.lean
This commit is contained in:
parent
1ca46cf454
commit
b0d663530b
|
@ -101,9 +101,9 @@ theorem AnalyticOn.order_eq_nat_iff'
|
||||||
{A : Finset U}
|
{A : Finset U}
|
||||||
(hf : AnalyticOn ℂ f U)
|
(hf : AnalyticOn ℂ f U)
|
||||||
(n : ℂ → ℕ) :
|
(n : ℂ → ℕ) :
|
||||||
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a : A, g a ≠ 0) ∧ ∀ z, f z = (∏ a : A, (z - a) ^ (n a)) • g z := by
|
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||||
|
|
||||||
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a : A, g a ≠ 0) ∧ ∀ z, f z = (∏ a : A, (z - a) ^ (n a)) • g z)
|
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
||||||
|
|
||||||
-- case empty
|
-- case empty
|
||||||
simp
|
simp
|
||||||
|
@ -115,3 +115,29 @@ theorem AnalyticOn.order_eq_nat_iff'
|
||||||
intro b₀ B hb iHyp
|
intro b₀ B hb iHyp
|
||||||
intro hBinsert
|
intro hBinsert
|
||||||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
||||||
|
|
||||||
|
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by sorry
|
||||||
|
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||||
|
|
||||||
|
use g₁
|
||||||
|
constructor
|
||||||
|
· exact h₁g₁
|
||||||
|
· constructor
|
||||||
|
· intro a h₁a
|
||||||
|
by_cases h₂a : a = b₀
|
||||||
|
· rwa [h₂a]
|
||||||
|
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
|
||||||
|
let B' := h₃g₁ a
|
||||||
|
let C' := h₂g₀ a A'
|
||||||
|
rw [B'] at C'
|
||||||
|
exact right_ne_zero_of_smul C'
|
||||||
|
· intro z
|
||||||
|
let A' := h₃g₀ z
|
||||||
|
rw [h₃g₁ z] at A'
|
||||||
|
rw [A']
|
||||||
|
rw [← smul_assoc]
|
||||||
|
congr
|
||||||
|
simp
|
||||||
|
rw [Finset.prod_insert]
|
||||||
|
ring
|
||||||
|
exact hb
|
||||||
|
|
Loading…
Reference in New Issue