Update complexHarmonic.lean
This commit is contained in:
parent
71ad6aa67e
commit
aeda1e981d
|
@ -49,7 +49,7 @@ theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ]
|
|||
· have : l ∘ f = (l : F₁ →L[ℝ] G₁) ∘ f := by rfl
|
||||
rw [this]
|
||||
exact harmonic_comp_CLM_is_harmonic
|
||||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||||
· have : f = (l.symm : G₁ →L[ℝ] F₁) ∘ l ∘ f := by
|
||||
funext z
|
||||
unfold Function.comp
|
||||
simp
|
||||
|
@ -129,6 +129,12 @@ theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ
|
|||
exact holomorphic_is_harmonic h
|
||||
|
||||
|
||||
theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||
Harmonic (Complex.conjCLE ∘ f) := by
|
||||
apply harmonic_iff_comp_CLE_is_harmonic.1
|
||||
exact holomorphic_is_harmonic h
|
||||
|
||||
|
||||
theorem log_normSq_of_holomorphic_is_harmonic
|
||||
{f : ℂ → ℂ}
|
||||
(h₁ : Differentiable ℂ f)
|
||||
|
|
Loading…
Reference in New Issue