Update laplace.lean
This commit is contained in:
parent
d5f34a3110
commit
ad1e7d113f
|
@ -16,10 +16,39 @@ import Nevanlinna.partialDeriv
|
||||||
|
|
||||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||||
|
|
||||||
noncomputable def Complex.laplace : (ℂ → F) → (ℂ → F) := by
|
|
||||||
intro f
|
noncomputable def Complex.laplace : (ℂ → F) → (ℂ → F) :=
|
||||||
let fx := partialDeriv ℝ 1 f
|
fun f ↦ partialDeriv ℝ 1 (partialDeriv ℝ 1 f) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f)
|
||||||
let fxx := partialDeriv ℝ 1 fx
|
|
||||||
let fy := partialDeriv ℝ Complex.I f
|
|
||||||
let fyy := partialDeriv ℝ Complex.I fy
|
theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ : ContDiff ℝ 2 f₂): Complex.laplace (f₁ + f₂) = (Complex.laplace f₁) + (Complex.laplace f₂) := by
|
||||||
exact fxx + fyy
|
unfold Complex.laplace
|
||||||
|
rw [partialDeriv_add₂]
|
||||||
|
rw [partialDeriv_add₂]
|
||||||
|
rw [partialDeriv_add₂]
|
||||||
|
rw [partialDeriv_add₂]
|
||||||
|
exact
|
||||||
|
add_add_add_comm (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁))
|
||||||
|
(partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂))
|
||||||
|
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁))
|
||||||
|
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂))
|
||||||
|
|
||||||
|
exact (partialDeriv_contDiff ℝ h₁ Complex.I).differentiable le_rfl
|
||||||
|
exact (partialDeriv_contDiff ℝ h₂ Complex.I).differentiable le_rfl
|
||||||
|
exact h₁.differentiable one_le_two
|
||||||
|
exact h₂.differentiable one_le_two
|
||||||
|
|
||||||
|
|
||||||
|
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||||
|
intro v
|
||||||
|
unfold Complex.laplace
|
||||||
|
rw [partialDeriv_smul₂]
|
||||||
|
rw [partialDeriv_smul₂]
|
||||||
|
rw [partialDeriv_smul₂]
|
||||||
|
rw [partialDeriv_smul₂]
|
||||||
|
simp
|
||||||
|
|
||||||
|
exact (partialDeriv_contDiff ℝ h Complex.I).differentiable le_rfl
|
||||||
|
exact h.differentiable one_le_two
|
||||||
|
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||||
|
exact h.differentiable one_le_two
|
||||||
|
|
Loading…
Reference in New Issue