Update analyticOn_zeroSet.lean
This commit is contained in:
parent
e41a08f1d5
commit
aa79fdb9eb
|
@ -1,21 +1,25 @@
|
|||
import Mathlib.Analysis.Analytic.Constructions
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Nevanlinna.analyticAt
|
||||
|
||||
|
||||
noncomputable def AnalyticOn.order
|
||||
{f : ℂ → ℂ} {U : Set ℂ} (hf : AnalyticOn ℂ f U) : U → ℕ∞ := fun u ↦ (hf u u.2).order
|
||||
|
||||
|
||||
theorem AnalyticOn.order_eq_nat_iff
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
{z₀ : U}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(hz₀ : z₀ ∈ U)
|
||||
(n : ℕ) :
|
||||
(hf z₀ hz₀).order = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
hf.order z₀ = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
|
||||
constructor
|
||||
-- Direction →
|
||||
intro hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ z₀.2) n).1 hn
|
||||
|
||||
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
|
||||
-- removable singularity removed
|
||||
|
@ -44,7 +48,7 @@ theorem AnalyticOn.order_eq_nat_iff
|
|||
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
||||
intro hz₁
|
||||
rw [eventually_nhds_iff]
|
||||
use {z₀}ᶜ
|
||||
use {z₀.1}ᶜ
|
||||
constructor
|
||||
· intro y hy
|
||||
simp at hy
|
||||
|
@ -87,59 +91,10 @@ theorem AnalyticOn.order_eq_nat_iff
|
|||
-- direction ←
|
||||
intro h
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
||||
dsimp [AnalyticOn.order]
|
||||
rw [AnalyticAt.order_eq_nat_iff]
|
||||
use g
|
||||
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticAt.order_mul
|
||||
{f₁ f₂ : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||||
(AnalyticAt.mul hf₁ hf₂).order = hf₁.order + hf₂.order := by
|
||||
by_cases h₂f₁ : hf₁.order = ⊤
|
||||
· simp [h₂f₁]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· by_cases h₂f₂ : hf₂.order = ⊤
|
||||
· simp [h₂f₂]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t y hy]
|
||||
ring
|
||||
· exact ⟨h₂t, h₃t⟩
|
||||
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
||||
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
||||
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
||||
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
||||
use g₁ * g₂
|
||||
constructor
|
||||
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
||||
· constructor
|
||||
· simp; tauto
|
||||
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
||||
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
||||
rw [eventually_nhds_iff]
|
||||
use t₁ ∩ t₂
|
||||
constructor
|
||||
· intro y hy
|
||||
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
||||
simp; ring
|
||||
· constructor
|
||||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||||
exact ⟨h₁g z₀ z₀.2, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticOn.eliminateZeros
|
||||
|
@ -148,7 +103,7 @@ theorem AnalyticOn.eliminateZeros
|
|||
{A : Finset U}
|
||||
(hf : AnalyticOn ℂ f U)
|
||||
(n : ℂ → ℕ) :
|
||||
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
(∀ a ∈ A, hf.order a = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
|
||||
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
||||
|
||||
|
@ -208,8 +163,7 @@ theorem AnalyticOn.eliminateZeros
|
|||
rw [h₂φ]
|
||||
simp
|
||||
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ b₀.2 (n b₀)).1 this
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ (n b₀)).1 this
|
||||
|
||||
use g₁
|
||||
constructor
|
||||
|
|
Loading…
Reference in New Issue