Update holomorphic_zero.lean
This commit is contained in:
parent
ec79ed7ba1
commit
a910bd6988
@ -36,6 +36,17 @@ theorem zeroDivisor_eq_ord_AtZeroDivisorSupport
|
||||
simp [analyticAtZeroDivisorSupport h]
|
||||
|
||||
|
||||
theorem zeroDivisor_eq_ord_AtZeroDivisorSupport'
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : z ∈ Function.support (zeroDivisor f)) :
|
||||
zeroDivisor f z = (analyticAtZeroDivisorSupport h).order := by
|
||||
|
||||
unfold zeroDivisor
|
||||
simp [analyticAtZeroDivisorSupport h]
|
||||
sorry
|
||||
|
||||
|
||||
lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by
|
||||
constructor
|
||||
· intro H₁
|
||||
@ -338,52 +349,75 @@ theorem AnalyticOn.order_eq_nat_iff
|
||||
tauto
|
||||
|
||||
|
||||
theorem eliminatingZeros
|
||||
noncomputable def zeroDivisorDegree
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₁U : IsPreconnected U) -- not needed!
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0) : -- not needed!
|
||||
ℕ := (zeroDivisor_finiteOnCompact h₁U h₁f h₂f h₂U).toFinset.card
|
||||
|
||||
|
||||
lemma zeroDivisorDegreeZero
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U) -- not needed!
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOn ℂ f U)
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0) : -- not needed!
|
||||
0 = zeroDivisorDegree h₁U h₂U h₁f h₂f ↔ U ∩ (zeroDivisor f).support = ∅ := by
|
||||
sorry
|
||||
|
||||
|
||||
lemma eliminatingZeros₀
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U) :
|
||||
∀ n : ℕ, ∀ f : ℂ → ℂ, (h₁f : AnalyticOn ℂ f U) → (h₂f : ∃ z ∈ U, f z ≠ 0) →
|
||||
(n = zeroDivisorDegree h₁U h₂U h₁f h₂f) →
|
||||
∃ F : ℂ → ℂ, (AnalyticOn ℂ F U) ∧ (f = F * ∏ᶠ a ∈ (U ∩ (zeroDivisor f).support), fun z ↦ (z - a) ^ (zeroDivisor f a)) := by
|
||||
|
||||
have hs := zeroDivisor_finiteOnCompact h₁U h₁f h₂f h₂U
|
||||
rw [finprod_mem_eq_finite_toFinset_prod _ hs]
|
||||
intro n
|
||||
induction' n with n ih
|
||||
-- case zero
|
||||
intro f h₁f h₂f h₃f
|
||||
use f
|
||||
rw [zeroDivisorDegreeZero] at h₃f
|
||||
rw [h₃f]
|
||||
simpa
|
||||
|
||||
let A := hs.card_eq
|
||||
-- case succ
|
||||
intro f h₁f h₂f h₃f
|
||||
|
||||
let Supp := (zeroDivisor_finiteOnCompact h₁U h₁f h₂f h₂U).toFinset
|
||||
|
||||
have : Supp.Nonempty := by
|
||||
rw [← Finset.one_le_card]
|
||||
calc 1
|
||||
_ ≤ n + 1 := by exact Nat.le_add_left 1 n
|
||||
_ = zeroDivisorDegree h₁U h₂U h₁f h₂f := by exact h₃f
|
||||
_ = Supp.card := by rfl
|
||||
obtain ⟨z₀, hz₀⟩ := this
|
||||
dsimp [Supp] at hz₀
|
||||
simp only [Set.Finite.mem_toFinset, Set.mem_inter_iff] at hz₀
|
||||
|
||||
|
||||
|
||||
let F : ℂ → ℂ := by
|
||||
intro z
|
||||
if hz : z ∈ U ∩ (zeroDivisor f).support then
|
||||
exact (Classical.choose (zeroDivisor_support_iff.1 hz.2).2.2) z
|
||||
else
|
||||
exact (f z) / ∏ i ∈ hs.toFinset, (z - i) ^ zeroDivisor f i
|
||||
|
||||
let A := AnalyticOn.order_eq_nat_iff h₁f hz₀.1 (zeroDivisor f z₀)
|
||||
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport hz₀.2
|
||||
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport' hz₀.2
|
||||
rw [eq_comm] at B
|
||||
let C := A B
|
||||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := C
|
||||
|
||||
have h₄g₀ : ∃ z ∈ U, g₀ z ≠ 0 := by sorry
|
||||
have h₅g₀ : n = zeroDivisorDegree h₁U h₂U h₁g₀ h₄g₀ := by sorry
|
||||
|
||||
obtain ⟨F, h₁F, h₂F⟩ := ih g₀ h₁g₀ h₄g₀ h₅g₀
|
||||
use F
|
||||
constructor
|
||||
· intro z h₁z
|
||||
by_cases h₂z : z ∈ (zeroDivisor f).support
|
||||
· -- case: z ∈ Function.support (zeroDivisor f)
|
||||
have : z ∈ U ∩ (zeroDivisor f).support := by exact Set.mem_inter h₁z h₂z
|
||||
|
||||
|
||||
sorry
|
||||
· sorry
|
||||
|
||||
have : MeromorphicOn F U := by
|
||||
apply MeromorphicOn.div
|
||||
exact AnalyticOn.meromorphicOn h₁f
|
||||
apply AnalyticOn.meromorphicOn
|
||||
apply Finset.analyticOn_prod
|
||||
intro n hn
|
||||
apply AnalyticOn.pow
|
||||
apply AnalyticOn.sub
|
||||
exact analyticOn_id ℂ
|
||||
exact analyticOn_const
|
||||
|
||||
--use F
|
||||
|
||||
|
||||
sorry
|
||||
· assumption
|
||||
·
|
||||
sorry
|
||||
|
Loading…
Reference in New Issue
Block a user