working
This commit is contained in:
parent
c8e1aacb15
commit
a7b0790675
|
@ -53,35 +53,45 @@ theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ :
|
||||||
exact h₂.differentiable one_le_two
|
exact h₂.differentiable one_le_two
|
||||||
|
|
||||||
|
|
||||||
theorem laplace_add_ContDiffOn {f₁ f₂ : ℂ → F} {s : Set ℂ} (hs : IsOpen s) (h₁ : ContDiffOn ℝ 2 f₁ s) (h₂ : ContDiffOn ℝ 2 f₂ s): ∀ x ∈ s, Complex.laplace (f₁ + f₂) x = (Complex.laplace f₁) x + (Complex.laplace f₂) x := by
|
theorem laplace_add_ContDiffOn
|
||||||
|
{f₁ f₂ : ℂ → F}
|
||||||
|
{s : Set ℂ}
|
||||||
|
(hs : IsOpen s)
|
||||||
|
(h₁ : ContDiffOn ℝ 2 f₁ s)
|
||||||
|
(h₂ : ContDiffOn ℝ 2 f₂ s) :
|
||||||
|
∀ x ∈ s, Complex.laplace (f₁ + f₂) x = (Complex.laplace f₁) x + (Complex.laplace f₂) x := by
|
||||||
|
|
||||||
unfold Complex.laplace
|
unfold Complex.laplace
|
||||||
simp
|
simp
|
||||||
intro x hx
|
intro x hx
|
||||||
|
|
||||||
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||||||
sorry
|
sorry
|
||||||
rw [partialDeriv_eventuallyEq ℝ this]
|
rw [partialDeriv_eventuallyEq ℝ this]
|
||||||
|
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
||||||
|
sorry
|
||||||
|
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
||||||
|
sorry
|
||||||
|
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
||||||
|
|
||||||
|
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
||||||
|
sorry
|
||||||
|
rw [partialDeriv_eventuallyEq ℝ this]
|
||||||
|
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
||||||
|
sorry
|
||||||
|
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
||||||
|
sorry
|
||||||
|
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
||||||
|
|
||||||
rw [partialDeriv_add₂]
|
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||||
|
-- I do not understand why.
|
||||||
rw [partialDeriv_add₂]
|
rw [add_assoc]
|
||||||
rw [partialDeriv_add₂]
|
rw [add_assoc]
|
||||||
rw [partialDeriv_add₂]
|
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||||||
exact
|
rw [add_comm]
|
||||||
add_add_add_comm (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁))
|
rw [add_assoc]
|
||||||
(partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂))
|
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||||||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁))
|
rw [add_comm]
|
||||||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂))
|
|
||||||
|
|
||||||
exact (partialDeriv_contDiff ℝ h₁ Complex.I).differentiable le_rfl
|
|
||||||
exact (partialDeriv_contDiff ℝ h₂ Complex.I).differentiable le_rfl
|
|
||||||
exact h₁.differentiable one_le_two
|
|
||||||
exact h₂.differentiable one_le_two
|
|
||||||
exact (partialDeriv_contDiff ℝ h₁ 1).differentiable le_rfl
|
|
||||||
exact (partialDeriv_contDiff ℝ h₂ 1).differentiable le_rfl
|
|
||||||
exact h₁.differentiable one_le_two
|
|
||||||
exact h₂.differentiable one_le_two
|
|
||||||
|
|
||||||
|
|
||||||
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||||
|
|
|
@ -54,6 +54,22 @@ theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable
|
||||||
rw [fderiv_add (h₁ w) (h₂ w)]
|
rw [fderiv_add (h₁ w) (h₂ w)]
|
||||||
|
|
||||||
|
|
||||||
|
theorem partialDeriv_add₂_differentiableAt
|
||||||
|
{f₁ f₂ : E → F}
|
||||||
|
{v : E}
|
||||||
|
{x : E}
|
||||||
|
(h₁ : DifferentiableAt 𝕜 f₁ x)
|
||||||
|
(h₂ : DifferentiableAt 𝕜 f₂ x)
|
||||||
|
:
|
||||||
|
partialDeriv 𝕜 v (f₁ + f₂) x = (partialDeriv 𝕜 v f₁) x + (partialDeriv 𝕜 v f₂) x := by
|
||||||
|
|
||||||
|
unfold partialDeriv
|
||||||
|
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||||||
|
rw [this]
|
||||||
|
rw [fderiv_add h₁ h₂]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
|
||||||
theorem partialDeriv_compContLin {f : E → F} {l : F →L[𝕜] G} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
theorem partialDeriv_compContLin {f : E → F} {l : F →L[𝕜] G} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||||
unfold partialDeriv
|
unfold partialDeriv
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue