Update complexHarmonic.lean
This commit is contained in:
parent
06f8de2f56
commit
a60e07e602
|
@ -142,18 +142,18 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||||
|
|
||||||
constructor
|
constructor
|
||||||
· -- logabs f is real C²
|
· -- logabs f is real C²
|
||||||
have : (fun z ↦ Real.log ‖f z‖) = (Real.log ∘ Complex.normSq ∘ f) / 2 := by
|
have : (fun z ↦ Real.log ‖f z‖) = (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) := by
|
||||||
funext z
|
funext z
|
||||||
simp
|
simp
|
||||||
unfold Complex.abs
|
unfold Complex.abs
|
||||||
simp
|
simp
|
||||||
rw [Real.log_sqrt]
|
rw [Real.log_sqrt]
|
||||||
exact Complex.normSq_nonneg (f z)
|
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
|
||||||
|
exact Complex.normSq_nonneg (f z)
|
||||||
rw [this]
|
rw [this]
|
||||||
have : Real.log ∘ ⇑Complex.normSq ∘ f / 2 = (fun z ↦ (1 / (2 : ℝ)) • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
|
||||||
funext z
|
have : (2 : ℝ)⁻¹ • (Real.log ∘ Complex.normSq ∘ f) = (fun z ↦ (2 : ℝ)⁻¹ • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
||||||
simp
|
simp
|
||||||
exact div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2
|
|
||||||
rw [this]
|
rw [this]
|
||||||
|
|
||||||
apply contDiff_iff_contDiffAt.2
|
apply contDiff_iff_contDiffAt.2
|
||||||
|
@ -169,5 +169,5 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||||
exact ContDiff.contDiffAt f_is_real_C2
|
exact ContDiff.contDiffAt f_is_real_C2
|
||||||
|
|
||||||
· -- Laplace vanishes
|
· -- Laplace vanishes
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue