From 9ea3dcb2d6ef252cef367ceba2bb9c0dfcafdb8b Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Fri, 16 Aug 2024 14:18:48 +0200 Subject: [PATCH] Update holomorphic_zero.lean --- Nevanlinna/holomorphic_zero.lean | 120 ++++++++++++++++++++----------- 1 file changed, 80 insertions(+), 40 deletions(-) diff --git a/Nevanlinna/holomorphic_zero.lean b/Nevanlinna/holomorphic_zero.lean index 8362bf5..7d8b1a3 100644 --- a/Nevanlinna/holomorphic_zero.lean +++ b/Nevanlinna/holomorphic_zero.lean @@ -23,6 +23,15 @@ theorem analyticAtZeroDivisorSupport simp [h₁f] at h +theorem zeroDivisor_eq_ord_AtZeroDivisorSupport + {f : ℂ → ℂ} + {z : ℂ} + (h : z ∈ Function.support (zeroDivisor f)) : + zeroDivisor f z = (analyticAtZeroDivisorSupport h).order.toNat := by + unfold zeroDivisor + simp [analyticAtZeroDivisorSupport h] + + lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by constructor · intro H₁ @@ -36,61 +45,92 @@ lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by simp +lemma natural_if_toNatNeZero {n : ℕ∞} : n.toNat ≠ 0 → ∃ m : ℕ, m = n := by + rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists] + contrapose; simp; tauto + + +theorem zeroDivisor_in_zeroSet + {f : ℂ → ℂ} + {z : ℂ} + (h : z ∈ Function.support (zeroDivisor f)) : + f z = 0 := by + + sorry + theorem discreteZeros {f : ℂ → ℂ} : DiscreteTopology (Function.support (zeroDivisor f)) := by - apply singletons_open_iff_discrete.mp + + simp_rw [← singletons_open_iff_discrete, Metric.isOpen_singleton_iff] intro z - let A := analyticAtZeroDivisorSupport z.2 - let c : WithTop ℕ := A.order - let B := AnalyticAt.order_eq_nat_iff A - let n := zeroDivisor f z.1 + have A : zeroDivisor f ↑z ≠ 0 := by exact z.2 + let B := zeroDivisor_eq_ord_AtZeroDivisorSupport z.2 + rw [B] at A + have C := natural_if_toNatNeZero A + obtain ⟨m, hm⟩ := C + have h₂m : m ≠ 0 := by + rw [← hm] at A + simp at A + assumption + rw [eq_comm] at hm + let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport z.2) m + rw [E] at hm + obtain ⟨g, h₁g, h₂g, h₃g⟩ := hm + rw [Metric.eventually_nhds_iff_ball] at h₃g + have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by + have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g + have : {0}ᶜ ∈ nhds (g z) := by + exact compl_singleton_mem_nhds_iff.mpr h₂g - have : ∃ a : ℕ, a = A.order := by - rw [← ENat.some_eq_coe] - rw [← WithTop.ne_top_iff_exists] - by_contra H - rw [AnalyticAt.order_eq_top_iff] at H + let F := h₄g.preimage_mem_nhds this + rw [Metric.mem_nhds_iff] at F + obtain ⟨ε, h₁ε, h₂ε⟩ := F + use ε + constructor; exact h₁ε + intro y hy + let G := h₂ε hy + simp at G + exact G + obtain ⟨ε₁, h₁ε₁⟩ := this + obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g + use min ε₁ ε₂ + constructor + · have : 0 < min ε₁ ε₂ := by + rw [lt_min_iff] + exact And.imp_right (fun _ => h₁ε₂) h₁ε₁ + exact this + intro y + intro h₁y - dsimp [n, zeroDivisor] - simp [A] + have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by + simp + calc dist y z + _ < min ε₁ ε₂ := by assumption + _ ≤ ε₂ := by exact min_le_right ε₁ ε₂ + have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by + simp + calc dist y z + _ < min ε₁ ε₂ := by assumption + _ ≤ ε₁ := by exact min_le_left ε₁ ε₂ + let F := h₂ε₂ y.1 h₂y + rw [zeroDivisor_in_zeroSet y.2] at F + simp at F + simp [h₂m] at F - - sorry - let C := (B n).1 this - - apply Metric.isOpen_singleton_iff.mpr - - - - /- - -Try this: refine Metric.isOpen_singleton_iff.mpr ?_ -Remaining subgoals: -⊢ ∃ ε > 0, ∀ (y : ↑(Function.support (zeroDivisor f))), dist y z < ε → y = z -Suggestions -Try this: refine isClosed_compl_iff.mp ?_ -Remaining subgoals: -⊢ IsClosed {z}ᶜ -Suggestions -Try this: refine disjoint_frontier_iff_isOpen.mp ?_ -Remaining subgoals: -⊢ Disjoint (frontier {z}) {z} -Suggestions -Try this: refine isOpen_iff_forall_mem_open.mpr ?_ -Remaining subgoals: -⊢ ∀ x ∈ {z}, ∃ t ⊆ {z}, IsOpen t ∧ x ∈ t - - -/ - sorry + have : g y.1 ≠ 0 := by + exact h₁ε₁.2 y h₃y + simp [this] at F + ext + rwa [sub_eq_zero] at F theorem zeroDivisor_finiteOnCompact