diff --git a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean index c72691a..eb05efd 100644 --- a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean +++ b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean @@ -367,26 +367,25 @@ theorem MeromorphicOn.decompose₃' have h₄f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := h₁f.meromorphicOn.divisor.finiteSupport h₁U let d := - h₁f.meromorphicOn.divisor.toFun + have h₁d : d.support = (Function.support h₁f.meromorphicOn.divisor) := by + ext x + unfold d + simp let h₁ := ∏ᶠ u, fun z ↦ (z - u) ^ (d u) have h₁h₁ : StronglyMeromorphicOn h₁ U := by intro z hz exact stronglyMeromorphicOn_ratlPolynomial₃ d z trivial + have h₂h₁ : h₁h₁.meromorphicOn.divisor = d := by + sorry + have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by + sorry let g' := f * h₁ have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn have h₂g' : h₁g'.divisor.toFun = 0 := by - rw [MeromorphicOn.divisor_mul h₁f.meromorphicOn (fun z hz ↦ h₃f ⟨z, hz⟩) h₁h₁.meromorphicOn _] - unfold MeromorphicOn.divisor + rw [MeromorphicOn.divisor_mul h₁f.meromorphicOn (fun z hz ↦ h₃f ⟨z, hz⟩) h₁h₁.meromorphicOn h₃h₁] + rw [h₂h₁] + unfold d simp - funext z - by_cases hz : z ∈ U - · simp [hz] - have : (Function.support d).Finite := by - sorry - rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁ d this] - simp - sorry - · simp [hz] - sorry let g := h₁g'.makeStronglyMeromorphicOn have h₁g : StronglyMeromorphicOn g U := by