Update complexHarmonic.lean
This commit is contained in:
parent
b03954eee9
commit
9ac79470cd
|
@ -52,14 +52,25 @@ lemma l₂ {f : ℂ → ℂ} (hf : ContDiff ℝ 2 f) (z a b : ℂ) :
|
||||||
· simp
|
· simp
|
||||||
|
|
||||||
|
|
||||||
theorem holomorphic_is_harmonic (f : ℂ → ℂ) :
|
theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
Differentiable ℂ f → Harmonic f := by
|
Harmonic f := by
|
||||||
|
|
||||||
|
-- f is real C²
|
||||||
|
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||||||
|
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||||
|
|
||||||
|
-- f' is real C¹
|
||||||
|
have f'_is_real_C1 : ContDiff ℝ 1 (fderiv ℝ f) :=
|
||||||
|
(contDiff_succ_iff_fderiv.1 f_is_real_C2).right
|
||||||
|
|
||||||
|
-- f' is real differentiable
|
||||||
|
have f'_is_differentiable : Differentiable ℝ (fderiv ℝ f) :=
|
||||||
|
(contDiff_succ_iff_fderiv.1 f'_is_real_C1).left
|
||||||
|
|
||||||
intro h
|
|
||||||
|
|
||||||
constructor
|
constructor
|
||||||
· -- f is two times real continuously differentiable
|
· -- f is two times real continuously differentiable
|
||||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
exact f_is_real_C2
|
||||||
|
|
||||||
· -- Laplace of f is zero
|
· -- Laplace of f is zero
|
||||||
intro z
|
intro z
|
||||||
|
@ -75,20 +86,14 @@ theorem holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
intro z
|
intro z
|
||||||
rw [CauchyRiemann₁ (h z)]
|
rw [CauchyRiemann₁ (h z)]
|
||||||
|
|
||||||
have t₂₀ : ContDiff ℝ 2 f := by exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
|
||||||
|
|
||||||
have t₀₀ : Differentiable ℝ (fun w => (fderiv ℝ f w)) := by
|
have t₀ : ∀ z, DifferentiableAt ℝ (fun w ↦ (fderiv ℝ f w) 1) z := by
|
||||||
let A := (contDiff_succ_iff_fderiv.1 t₂₀).right
|
|
||||||
let B := (contDiff_succ_iff_fderiv.1 A).left
|
|
||||||
exact B
|
|
||||||
|
|
||||||
have t₀ : ∀ z, DifferentiableAt ℝ (fun w => (fderiv ℝ f w) 1) z := by
|
|
||||||
intro z
|
intro z
|
||||||
let A := t₀₀
|
let A := f'_is_differentiable
|
||||||
fun_prop
|
fun_prop
|
||||||
|
|
||||||
have t₁ : ∀ x, (fderiv ℝ (fun w => Complex.I * (fderiv ℝ f w) 1) z) x
|
have t₁ : ∀ x, (fderiv ℝ (fun w ↦ Complex.I * (fderiv ℝ f w) 1) z) x
|
||||||
= Complex.I * ((fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) x) := by
|
= Complex.I * ((fderiv ℝ (fun w ↦ (fderiv ℝ f w) 1) z) x) := by
|
||||||
intro x
|
intro x
|
||||||
rw [fderiv_const_mul]
|
rw [fderiv_const_mul]
|
||||||
simp
|
simp
|
||||||
|
@ -97,11 +102,11 @@ theorem holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
|
|
||||||
have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I
|
have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I
|
||||||
= (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by
|
= (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by
|
||||||
let A := derivSymm f t₂₀ z 1 Complex.I
|
let A := derivSymm f f_is_real_C2 z 1 Complex.I
|
||||||
let B := l₂ t₂₀ z Complex.I 1
|
let B := l₂ f_is_real_C2 z Complex.I 1
|
||||||
rw [← B]
|
rw [← B]
|
||||||
rw [A]
|
rw [A]
|
||||||
let C := l₂ t₂₀ z 1 Complex.I
|
let C := l₂ f_is_real_C2 z 1 Complex.I
|
||||||
rw [C]
|
rw [C]
|
||||||
rw [t₂]
|
rw [t₂]
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue