diff --git a/Nevanlinna/harmonicAt.lean b/Nevanlinna/harmonicAt.lean index 76d9f0d..7c16a62 100644 --- a/Nevanlinna/harmonicAt.lean +++ b/Nevanlinna/harmonicAt.lean @@ -22,7 +22,7 @@ theorem HarmonicAt_iff HarmonicAt f x ↔ ∃ s : Set ℂ, IsOpen s ∧ x ∈ s ∧ (ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0) := by constructor · intro hf - obtain ⟨s₁, h₁s₁, h₂s₁, h₃s₁⟩ := hf.1.contDiffOn' le_rfl + obtain ⟨s₁, h₁s₁, h₂s₁, h₃s₁⟩ := hf.1.contDiffOn' le_rfl (by trivial) simp at h₃s₁ obtain ⟨t₂, h₁t₂, h₂t₂⟩ := (Filter.eventuallyEq_iff_exists_mem.1 hf.2) obtain ⟨s₂, h₁s₂, h₂s₂, h₃s₂⟩ := mem_nhds_iff.1 h₁t₂ @@ -261,7 +261,7 @@ theorem harmonicAt_comp_CLM_is_harmonicAt apply ContDiffAt.continuousLinearMap_comp exact h.1 · -- Δ (⇑l ∘ f) =ᶠ[nhds z] 0 - obtain ⟨r, h₁r, h₂r⟩ := h.1.contDiffOn le_rfl + obtain ⟨r, h₁r, h₂r⟩ := h.1.contDiffOn le_rfl (by trivial) obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁r obtain ⟨t, h₁t, h₂t⟩ := Filter.eventuallyEq_iff_exists_mem.1 h.2 obtain ⟨u, h₁u, h₂u, h₃u⟩ := mem_nhds_iff.1 h₁t