Update mathlib

This commit is contained in:
Stefan Kebekus 2024-06-28 07:53:20 +02:00
parent 6412671bc6
commit 9a9fbf1b54
3 changed files with 161 additions and 28 deletions

View File

@ -1,4 +1,4 @@
import Mathlib.Algebra.BigOperators.Basic --import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Dual import Mathlib.Analysis.InnerProductSpace.Dual
import Mathlib.Analysis.InnerProductSpace.PiL2 import Mathlib.Analysis.InnerProductSpace.PiL2
@ -9,31 +9,164 @@ open Finset
variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] variable {E : Type*} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F] variable {F : Type*} [NormedAddCommGroup F] [NormedSpace F]
open BigOperators
open TensorProduct open Finset
example : 0 = 1 := by
let B := (sesqFormOfInner (𝕜 := ) (E := E)).flip
have e: E := by sorry
let C := B e
let α := InnerProductSpace.toDual E lemma vectorPresentation
[Fintype ι]
let β : E →ₗ[] := by sorry (b : Basis ι E)
let YY := E ⊗[] E (hb : Orthonormal b)
(v : E) :
let ZZ := TensorProduct.mapBilinear E E v = ∑ i, ⟪b i, v⟫_ • (b i) := by
nth_rw 1 [← (b.sum_repr v)]
apply Fintype.sum_congr
intro i
rw [← Orthonormal.inner_right_finsupp hb (b.repr v) i]
simp
let A : E × E → LinearMap.BilinForm E := by theorem BilinearCalc
unfold LinearMap.BilinForm [Fintype ι]
intro (e₁, e₂) (v : Basis ι E)
(c : ι)
(L : E →ₗ[] E →ₗ[] F)
: L (∑ j : ι, c j • v j) (∑ j : ι, c j • v j)
= ∑ x : Fin 2 → ι, (c (x 0) * c (x 1)) • L (v (x 0)) (v (x 1)) := by
rw [map_sum]
rw [map_sum]
conv =>
left
arg 2
intro r
rw [← sum_apply]
rw [map_smul]
arg 2
arg 1
arg 2
intro x
rw [map_smul]
simp
lemma c2
[Fintype ι]
(b : Basis ι E)
(hb : Orthonormal b)
(x y : E) :
⟪x, y⟫_ = ∑ i : ι, ⟪x, b i⟫_ * ⟪y, b i⟫_ := by
rw [vectorPresentation b hb x]
rw [vectorPresentation b hb y]
rw [Orthonormal.inner_sum hb]
simp
conv =>
right
arg 2
intro i'
rw [Orthonormal.inner_left_fintype hb]
rw [Orthonormal.inner_left_fintype hb]
lemma fin_sum
[Fintype ι]
(f : ιι → F) :
∑ r : Fin 2 → ι, f (r 0) (r 1) = ∑ r₀ : ι, (∑ r₁ : ι, f r₀ r₁) := by
rw [← Fintype.sum_prod_type']
apply Fintype.sum_equiv (finTwoArrowEquiv ι)
intro x
dsimp
theorem TensorIndep
[Fintype ι] [DecidableEq ι]
(v₁ : Basis ι E)
(hv₁ : Orthonormal v₁)
(v₂ : Basis ι E)
(hv₂ : Orthonormal v₂) :
∑ i, (v₁ i) ⊗ₜ[] (v₁ i) = ∑ i, (v₂ i) ⊗ₜ[] (v₂ i) := by
conv =>
right
arg 2
intro i
rw [vectorPresentation v₁ hv₁ (v₂ i)]
rw [TensorProduct.sum_tmul]
arg 2
intro j
rw [TensorProduct.tmul_sum]
arg 2
intro a
rw [TensorProduct.tmul_smul]
arg 2
rw [TensorProduct.smul_tmul]
rw [Finset.sum_comm]
conv =>
right
arg 2
intro i
rw [Finset.sum_comm]
sorry sorry
sorry theorem LaplaceIndep
[Fintype ι] [DecidableEq ι]
(v₁ : Basis ι E)
(hv₁ : Orthonormal v₁)
(v₂ : Basis ι E)
(hv₂ : Orthonormal v₂)
(L : E →ₗ[] E →ₗ[] F) :
∑ i, L (v₁ i) (v₁ i) = ∑ i, L (v₂ i) (v₂ i) := by
have vector_vs_function
{y : Fin 2 → ι}
{v : ι → E}
: (fun i => v (y i)) = ![v (y 0), v (y 1)] := by
funext i
by_cases h : i = 0
· rw [h]
simp
· rw [Fin.eq_one_of_neq_zero i h]
simp
conv =>
right
arg 2
intro i
rw [vectorPresentation v₁ hv₁ (v₂ i)]
rw [BilinearCalc]
rw [Finset.sum_comm]
conv =>
right
arg 2
intro y
rw [← Finset.sum_smul]
rw [← c2 v₂ hv₂ (v₁ (y 0)) (v₁ (y 1))]
rw [vector_vs_function]
simp
rw [fin_sum (fun i₀ ↦ (fun i₁ ↦ ⟪v₁ i₀, v₁ i₁⟫_ • L ![v₁ i₀, v₁ i₁]))]
have xx {r₀ : ι} : ∀ r₁ : ι, r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ • L ![v₁ r₀, v₁ r₁] = 0 := by
intro r₁ hr₁
rw [orthonormal_iff_ite.1 hv₁]
simp
tauto
conv =>
right
arg 2
intro r₀
rw [Fintype.sum_eq_single r₀ xx]
rw [orthonormal_iff_ite.1 hv₁]
apply sum_congr
rfl
intro x _
rw [vector_vs_function]
simp

View File

@ -1,7 +1,7 @@
import Mathlib.Analysis.InnerProductSpace.Basic import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.Analysis.InnerProductSpace.Dual import Mathlib.Analysis.InnerProductSpace.Dual
import Mathlib.Analysis.InnerProductSpace.PiL2 import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.Algebra.BigOperators.Basic --import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Analysis.Calculus.ContDiff.Bounds import Mathlib.Analysis.Calculus.ContDiff.Bounds
import Mathlib.Analysis.Calculus.FDeriv.Symmetric import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import Mathlib.LinearAlgebra.Basis import Mathlib.LinearAlgebra.Basis

View File

@ -31,10 +31,10 @@
{"url": "https://github.com/leanprover-community/ProofWidgets4", {"url": "https://github.com/leanprover-community/ProofWidgets4",
"type": "git", "type": "git",
"subDir": null, "subDir": null,
"rev": "e6b6247c61280c77ade6bbf0bc3c66a44fe2e0c5", "rev": "87c1e7a427d8e21b6eaf8401f12897f52e2c3be9",
"name": "proofwidgets", "name": "proofwidgets",
"manifestFile": "lake-manifest.json", "manifestFile": "lake-manifest.json",
"inputRev": "v0.0.36", "inputRev": "v0.0.38",
"inherited": true, "inherited": true,
"configFile": "lakefile.lean"}, "configFile": "lakefile.lean"},
{"url": "https://github.com/leanprover/lean4-cli", {"url": "https://github.com/leanprover/lean4-cli",
@ -58,7 +58,7 @@
{"url": "https://github.com/leanprover-community/mathlib4.git", {"url": "https://github.com/leanprover-community/mathlib4.git",
"type": "git", "type": "git",
"subDir": null, "subDir": null,
"rev": "9c4c6f78c9a1b7beba018504e284d497a3761af2", "rev": "dcc73cfb2ce3763f830c52042fb8617e762dbf60",
"name": "mathlib", "name": "mathlib",
"manifestFile": "lake-manifest.json", "manifestFile": "lake-manifest.json",
"inputRev": null, "inputRev": null,