working
This commit is contained in:
parent
5328c7cc2a
commit
9a7c8b82a4
|
@ -33,6 +33,21 @@ theorem HolomorphicAt_iff
|
|||
· assumption
|
||||
|
||||
|
||||
theorem Differentiable.holomorphicAt
|
||||
{f : E → F}
|
||||
(hf : Differentiable ℂ f)
|
||||
{x : E} :
|
||||
HolomorphicAt f x := by
|
||||
apply HolomorphicAt_iff.2
|
||||
use Set.univ
|
||||
constructor
|
||||
· exact isOpen_univ
|
||||
· constructor
|
||||
· exact trivial
|
||||
· intro z _
|
||||
exact hf z
|
||||
|
||||
|
||||
theorem HolomorphicAt_isOpen
|
||||
(f : E → F) :
|
||||
IsOpen { x : E | HolomorphicAt f x } := by
|
||||
|
|
|
@ -12,7 +12,7 @@ theorem jensen_case_R_eq_one
|
|||
(F : ℂ → ℂ)
|
||||
(h₁F : Differentiable ℂ F)
|
||||
(h₂F : ∀ z, F z ≠ 0)
|
||||
(h₃F : f = fun z ↦ (F z) * ∑ s : S, (z - a s))
|
||||
(h₃F : f = fun z ↦ (F z) * ∏ s : S, (z - a s))
|
||||
:
|
||||
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
|
||||
|
||||
|
@ -21,29 +21,63 @@ theorem jensen_case_R_eq_one
|
|||
have t₀ : ∀ z, HarmonicAt logAbsF z := by
|
||||
intro z
|
||||
apply logabs_of_holomorphicAt_is_harmonic
|
||||
sorry
|
||||
apply h₁F.holomorphicAt
|
||||
exact h₂F z
|
||||
|
||||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
|
||||
apply harmonic_meanValue t₀ 1
|
||||
exact Real.zero_lt_one
|
||||
|
||||
have t₂ : ∀ s, f (a s) = 0 := by
|
||||
intro s
|
||||
rw [h₃F]
|
||||
simp
|
||||
right
|
||||
apply Finset.prod_eq_zero_iff.2
|
||||
use s
|
||||
simp
|
||||
|
||||
let logAbsf := fun w ↦ Real.log ‖f w‖
|
||||
have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
|
||||
sorry
|
||||
intro z hz
|
||||
dsimp [logAbsf]
|
||||
rw [h₃F]
|
||||
simp_rw [Complex.abs.map_mul]
|
||||
rw [Complex.abs_prod]
|
||||
rw [Real.log_mul]
|
||||
rw [Real.log_prod]
|
||||
rfl
|
||||
intro s hs
|
||||
simp
|
||||
by_contra ha'
|
||||
rw [ha'] at hz
|
||||
exact hz (t₂ s)
|
||||
-- Complex.abs (F z) ≠ 0
|
||||
simp
|
||||
exact h₂F z
|
||||
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
|
||||
by_contra h'
|
||||
obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h'
|
||||
simp at h''
|
||||
rw [h''] at hz
|
||||
let A := t₂ s
|
||||
exact hz A
|
||||
|
||||
have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
|
||||
sorry
|
||||
|
||||
rw [s₁ 0 h₂f] at t₁
|
||||
|
||||
have {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by sorry
|
||||
have {x : ℝ} : f (circleMap 0 1 x) ≠ 0 := by
|
||||
sorry
|
||||
|
||||
simp_rw [s₁ (circleMap 0 1 _) this] at t₁
|
||||
rw [intervalIntegral.integral_sub] at t₁
|
||||
rw [intervalIntegral.integral_finset_sum] at t₁
|
||||
|
||||
have {i : S} : ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a i‖ = 0 := by
|
||||
|
||||
sorry
|
||||
|
||||
simp_rw [this] at t₁
|
||||
simp at t₁
|
||||
rw [t₁]
|
||||
|
|
Loading…
Reference in New Issue