This commit is contained in:
Stefan Kebekus 2024-07-31 15:59:43 +02:00
parent 5328c7cc2a
commit 9a7c8b82a4
2 changed files with 54 additions and 5 deletions

View File

@ -33,6 +33,21 @@ theorem HolomorphicAt_iff
· assumption · assumption
theorem Differentiable.holomorphicAt
{f : E → F}
(hf : Differentiable f)
{x : E} :
HolomorphicAt f x := by
apply HolomorphicAt_iff.2
use Set.univ
constructor
· exact isOpen_univ
· constructor
· exact trivial
· intro z _
exact hf z
theorem HolomorphicAt_isOpen theorem HolomorphicAt_isOpen
(f : E → F) : (f : E → F) :
IsOpen { x : E | HolomorphicAt f x } := by IsOpen { x : E | HolomorphicAt f x } := by

View File

@ -12,7 +12,7 @@ theorem jensen_case_R_eq_one
(F : ) (F : )
(h₁F : Differentiable F) (h₁F : Differentiable F)
(h₂F : ∀ z, F z ≠ 0) (h₂F : ∀ z, F z ≠ 0)
(h₃F : f = fun z ↦ (F z) * s : S, (z - a s)) (h₃F : f = fun z ↦ (F z) * s : S, (z - a s))
: :
Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by Real.log ‖f 0‖ = -∑ s, Real.log (‖a s‖⁻¹) + (2 * Real.pi)⁻¹ * ∫ (x : ) in (0)..2 * Real.pi, Real.log ‖f (circleMap 0 1 x)‖ := by
@ -21,29 +21,63 @@ theorem jensen_case_R_eq_one
have t₀ : ∀ z, HarmonicAt logAbsF z := by have t₀ : ∀ z, HarmonicAt logAbsF z := by
intro z intro z
apply logabs_of_holomorphicAt_is_harmonic apply logabs_of_holomorphicAt_is_harmonic
sorry apply h₁F.holomorphicAt
exact h₂F z exact h₂F z
have t₁ : (∫ (x : ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by have t₁ : (∫ (x : ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
apply harmonic_meanValue t₀ 1 apply harmonic_meanValue t₀ 1
exact Real.zero_lt_one exact Real.zero_lt_one
have t₂ : ∀ s, f (a s) = 0 := by
intro s
rw [h₃F]
simp
right
apply Finset.prod_eq_zero_iff.2
use s
simp
let logAbsf := fun w ↦ Real.log ‖f w‖ let logAbsf := fun w ↦ Real.log ‖f w‖
have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by have s₀ : ∀ z, f z ≠ 0 → logAbsf z = logAbsF z + ∑ s, Real.log ‖z - a s‖ := by
sorry intro z hz
dsimp [logAbsf]
rw [h₃F]
simp_rw [Complex.abs.map_mul]
rw [Complex.abs_prod]
rw [Real.log_mul]
rw [Real.log_prod]
rfl
intro s hs
simp
by_contra ha'
rw [ha'] at hz
exact hz (t₂ s)
-- Complex.abs (F z) ≠ 0
simp
exact h₂F z
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
by_contra h'
obtain ⟨s, h's, h''⟩ := Finset.prod_eq_zero_iff.1 h'
simp at h''
rw [h''] at hz
let A := t₂ s
exact hz A
have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by have s₁ : ∀ z, f z ≠ 0 → logAbsF z = logAbsf z - ∑ s, Real.log ‖z - a s‖ := by
sorry sorry
rw [s₁ 0 h₂f] at t₁ rw [s₁ 0 h₂f] at t₁
have {x : } : f (circleMap 0 1 x) ≠ 0 := by sorry have {x : } : f (circleMap 0 1 x) ≠ 0 := by
sorry
simp_rw [s₁ (circleMap 0 1 _) this] at t₁ simp_rw [s₁ (circleMap 0 1 _) this] at t₁
rw [intervalIntegral.integral_sub] at t₁ rw [intervalIntegral.integral_sub] at t₁
rw [intervalIntegral.integral_finset_sum] at t₁ rw [intervalIntegral.integral_finset_sum] at t₁
have {i : S} : ∫ (x : ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a i‖ = 0 := by have {i : S} : ∫ (x : ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a i‖ = 0 := by
sorry sorry
simp_rw [this] at t₁ simp_rw [this] at t₁
simp at t₁ simp at t₁
rw [t₁] rw [t₁]