This commit is contained in:
Stefan Kebekus
2024-07-31 15:59:43 +02:00
parent 5328c7cc2a
commit 9a7c8b82a4
2 changed files with 54 additions and 5 deletions

View File

@@ -33,6 +33,21 @@ theorem HolomorphicAt_iff
· assumption
theorem Differentiable.holomorphicAt
{f : E F}
(hf : Differentiable f)
{x : E} :
HolomorphicAt f x := by
apply HolomorphicAt_iff.2
use Set.univ
constructor
· exact isOpen_univ
· constructor
· exact trivial
· intro z _
exact hf z
theorem HolomorphicAt_isOpen
(f : E F) :
IsOpen { x : E | HolomorphicAt f x } := by

View File

@@ -12,7 +12,7 @@ theorem jensen_case_R_eq_one
(F : )
(h₁F : Differentiable F)
(h₂F : z, F z 0)
(h₃F : f = fun z (F z) * s : S, (z - a s))
(h₃F : f = fun z (F z) * s : S, (z - a s))
:
Real.log f 0 = - s, Real.log (a s⁻¹) + (2 * Real.pi)⁻¹ * (x : ) in (0)..2 * Real.pi, Real.log f (circleMap 0 1 x) := by
@@ -21,29 +21,63 @@ theorem jensen_case_R_eq_one
have t₀ : z, HarmonicAt logAbsF z := by
intro z
apply logabs_of_holomorphicAt_is_harmonic
sorry
apply h₁F.holomorphicAt
exact h₂F z
have t₁ : ( (x : ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
apply harmonic_meanValue t₀ 1
exact Real.zero_lt_one
have t₂ : s, f (a s) = 0 := by
intro s
rw [h₃F]
simp
right
apply Finset.prod_eq_zero_iff.2
use s
simp
let logAbsf := fun w Real.log f w
have s₀ : z, f z 0 logAbsf z = logAbsF z + s, Real.log z - a s := by
sorry
intro z hz
dsimp [logAbsf]
rw [h₃F]
simp_rw [Complex.abs.map_mul]
rw [Complex.abs_prod]
rw [Real.log_mul]
rw [Real.log_prod]
rfl
intro s hs
simp
by_contra ha'
rw [ha'] at hz
exact hz (t₂ s)
-- Complex.abs (F z) ≠ 0
simp
exact h₂F z
-- ∏ I : { x // x ∈ S }, Complex.abs (z - a I) ≠ 0
by_contra h'
obtain s, h's, h'' := Finset.prod_eq_zero_iff.1 h'
simp at h''
rw [h''] at hz
let A := t₂ s
exact hz A
have s₁ : z, f z 0 logAbsF z = logAbsf z - s, Real.log z - a s := by
sorry
rw [s₁ 0 h₂f] at t₁
have {x : } : f (circleMap 0 1 x) 0 := by sorry
have {x : } : f (circleMap 0 1 x) 0 := by
sorry
simp_rw [s₁ (circleMap 0 1 _) this] at t₁
rw [intervalIntegral.integral_sub] at t₁
rw [intervalIntegral.integral_finset_sum] at t₁
have {i : S} : (x : ) in (0)..2 * Real.pi, Real.log circleMap 0 1 x - a i = 0 := by
sorry
simp_rw [this] at t₁
simp at t₁
rw [t₁]