diff --git a/nevanlinna/logabs.lean b/nevanlinna/logabs.lean index e5b5d9d..dc92c6d 100644 --- a/nevanlinna/logabs.lean +++ b/nevanlinna/logabs.lean @@ -46,7 +46,7 @@ lemma logAbsXX : ∀ z : ℂ, z ≠ 0 → Real.log (Complex.abs z) = (1 / 2) * C rw [t₃] rw [Complex.normSq_eq_conj_mul_self] - have : conj z ≠ 0 := by + have t₄ : conj z ≠ 0 := by exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr z₁Hyp let XX := Complex.log_mul_eq_add_log_iff this z₁Hyp