Update mathlib
This commit is contained in:
parent
86da08ebc8
commit
9498d9f203
|
@ -2,6 +2,7 @@ import Mathlib.Analysis.SpecialFunctions.Integrals
|
|||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||||
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
|
||||
import Nevanlinna.analyticAt
|
||||
import Nevanlinna.divisor
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
@ -9,82 +10,11 @@ open Real Filter MeasureTheory intervalIntegral
|
|||
|
||||
|
||||
|
||||
structure Divisor where
|
||||
toFun : ℂ → ℤ
|
||||
-- This is not what we want. We want: locally finite
|
||||
discreteSupport : DiscreteTopology (Function.support toFun)
|
||||
|
||||
instance : CoeFun Divisor (fun _ ↦ ℂ → ℤ) where
|
||||
coe := Divisor.toFun
|
||||
attribute [coe] Divisor.toFun
|
||||
|
||||
|
||||
|
||||
noncomputable def Divisor.deg
|
||||
(D : Divisor) : ℤ := ∑ᶠ z, D z
|
||||
|
||||
noncomputable def Divisor.n_trunk
|
||||
(D : Divisor) : ℤ → ℝ → ℤ := fun k r ↦ ∑ᶠ z ∈ Metric.ball 0 r, min k (D z)
|
||||
|
||||
noncomputable def Divisor.n
|
||||
(D : Divisor) : ℝ → ℤ := fun r ↦ ∑ᶠ z ∈ Metric.ball 0 r, D z
|
||||
|
||||
noncomputable def Divisor.N_trunk
|
||||
(D : Divisor) : ℤ → ℝ → ℝ := fun k r ↦ ∫ (t : ℝ) in (1)..r, (D.n_trunk k t) / t
|
||||
|
||||
|
||||
theorem Divisor.support_cap_closed₁
|
||||
{S U : Set ℂ}
|
||||
(hS : DiscreteTopology S)
|
||||
(hU : IsClosed U) :
|
||||
IsClosed (U ∩ S) := by
|
||||
|
||||
rw [← isOpen_compl_iff]
|
||||
rw [isOpen_iff_forall_mem_open]
|
||||
intro x hx
|
||||
by_cases h₁x : x ∈ U
|
||||
· simp at hx
|
||||
|
||||
|
||||
sorry
|
||||
· use Uᶜ
|
||||
constructor
|
||||
· simp
|
||||
· constructor
|
||||
· exact IsClosed.isOpen_compl
|
||||
· assumption
|
||||
|
||||
|
||||
|
||||
theorem Divisor.support_cap_closed
|
||||
(D : Divisor)
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsClosed U) :
|
||||
IsClosed (U ∩ D.toFun.support) := by
|
||||
sorry
|
||||
|
||||
|
||||
theorem Divisor.support_cap_compact
|
||||
(D : Divisor)
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsCompact U) :
|
||||
Set.Finite (U ∩ (Function.support D)) := by
|
||||
|
||||
apply IsCompact.finite
|
||||
-- Target set is compact
|
||||
apply h₁U.of_isClosed_subset
|
||||
apply D.support_cap_closed h₁U.isClosed
|
||||
exact Set.inter_subset_left
|
||||
-- Target set is discrete
|
||||
apply DiscreteTopology.of_subset D.discreteSupport
|
||||
exact Set.inter_subset_right
|
||||
|
||||
|
||||
noncomputable def AnalyticOnNhd.zeroDivisor
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : AnalyticOnNhd ℂ f U) :
|
||||
Divisor where
|
||||
Divisor U where
|
||||
|
||||
toFun := by
|
||||
intro z
|
||||
|
@ -93,6 +23,12 @@ noncomputable def AnalyticOnNhd.zeroDivisor
|
|||
else
|
||||
exact 0
|
||||
|
||||
supportInU := by
|
||||
intro z hz
|
||||
simp only [Function.mem_support] at hz
|
||||
simp only [Function.mem_support, ne_eq, dite_eq_else, Nat.cast_eq_zero, ENat.toNat_eq_zero, not_forall, not_or] at hz
|
||||
|
||||
|
||||
discreteSupport := by
|
||||
simp_rw [← singletons_open_iff_discrete]
|
||||
simp_rw [Metric.isOpen_singleton_iff]
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.analyticOn_zeroSet
|
||||
import Nevanlinna.analyticOnNhd_zeroSet
|
||||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||||
|
|
|
@ -666,7 +666,7 @@ theorem primitive_additivity'
|
|||
dsimp [ε']; simp
|
||||
have : |ε| = ε := by apply abs_of_pos h₁ε
|
||||
rw [this]
|
||||
apply (inv_mul_lt_iff zero_lt_two).mpr
|
||||
apply (inv_mul_lt_iff₀ zero_lt_two).mpr
|
||||
linarith
|
||||
have h₁ε' : 0 < ε' := by
|
||||
apply mul_pos _ h₁ε
|
||||
|
|
|
@ -3,7 +3,7 @@ import Mathlib.Analysis.Analytic.Meromorphic
|
|||
import Mathlib.Topology.ContinuousOn
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.holomorphic
|
||||
import Nevanlinna.analyticOn_zeroSet
|
||||
import Nevanlinna.analyticOnNhd_zeroSet
|
||||
|
||||
|
||||
noncomputable def zeroDivisor
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "bf12ff6041cbab6eba6b54d9467baed807bb2bfd",
|
||||
"rev": "daf1ed91789811cf6bbb7bf2f4dad6b3bad8fbf4",
|
||||
"name": "batteries",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "main",
|
||||
|
@ -15,7 +15,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "2c8ae451ce9ffc83554322b14437159c1a9703f9",
|
||||
"rev": "2b2f6d7fbe9d917fc010e9054c1ce11774c9088b",
|
||||
"name": "Qq",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "master",
|
||||
|
@ -25,7 +25,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "50aaaf78b7db5bd635c19c660d59ed31b9bc9b5a",
|
||||
"rev": "b20a88676fd00affb90cbc9f1ff004ae588103b3",
|
||||
"name": "aesop",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "master",
|
||||
|
@ -55,7 +55,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "fb7841a6f4fb389ec0e47dd4677844d49906af3c",
|
||||
"rev": "63a7d4a353f48f6c5f1bc19d0f018b0513cb370a",
|
||||
"name": "importGraph",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "main",
|
||||
|
@ -65,7 +65,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "leanprover-community",
|
||||
"rev": "2ba60fa2c384a94735454db11a2d523612eaabff",
|
||||
"rev": "4b61d4abc1659f15ffda5ec24fdebc229d51d066",
|
||||
"name": "LeanSearchClient",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": "main",
|
||||
|
@ -75,7 +75,7 @@
|
|||
"type": "git",
|
||||
"subDir": null,
|
||||
"scope": "",
|
||||
"rev": "eed3300c27c9f168d53e13bb198a92a147b671d0",
|
||||
"rev": "cbe02ad0a6243d7688e60d69fd7ee0387d6f8059",
|
||||
"name": "mathlib",
|
||||
"manifestFile": "lake-manifest.json",
|
||||
"inputRev": null,
|
||||
|
|
|
@ -1 +1 @@
|
|||
leanprover/lean4:v4.12.0-rc1
|
||||
leanprover/lean4:v4.13.0-rc3
|
||||
|
|
Loading…
Reference in New Issue