Update mathlib
This commit is contained in:
@@ -2,6 +2,7 @@ import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||||
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
|
||||
import Nevanlinna.analyticAt
|
||||
import Nevanlinna.divisor
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
@@ -9,89 +10,24 @@ open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
|
||||
|
||||
structure Divisor where
|
||||
toFun : ℂ → ℤ
|
||||
-- This is not what we want. We want: locally finite
|
||||
discreteSupport : DiscreteTopology (Function.support toFun)
|
||||
|
||||
instance : CoeFun Divisor (fun _ ↦ ℂ → ℤ) where
|
||||
coe := Divisor.toFun
|
||||
attribute [coe] Divisor.toFun
|
||||
|
||||
|
||||
|
||||
noncomputable def Divisor.deg
|
||||
(D : Divisor) : ℤ := ∑ᶠ z, D z
|
||||
|
||||
noncomputable def Divisor.n_trunk
|
||||
(D : Divisor) : ℤ → ℝ → ℤ := fun k r ↦ ∑ᶠ z ∈ Metric.ball 0 r, min k (D z)
|
||||
|
||||
noncomputable def Divisor.n
|
||||
(D : Divisor) : ℝ → ℤ := fun r ↦ ∑ᶠ z ∈ Metric.ball 0 r, D z
|
||||
|
||||
noncomputable def Divisor.N_trunk
|
||||
(D : Divisor) : ℤ → ℝ → ℝ := fun k r ↦ ∫ (t : ℝ) in (1)..r, (D.n_trunk k t) / t
|
||||
|
||||
|
||||
theorem Divisor.support_cap_closed₁
|
||||
{S U : Set ℂ}
|
||||
(hS : DiscreteTopology S)
|
||||
(hU : IsClosed U) :
|
||||
IsClosed (U ∩ S) := by
|
||||
|
||||
rw [← isOpen_compl_iff]
|
||||
rw [isOpen_iff_forall_mem_open]
|
||||
intro x hx
|
||||
by_cases h₁x : x ∈ U
|
||||
· simp at hx
|
||||
|
||||
|
||||
sorry
|
||||
· use Uᶜ
|
||||
constructor
|
||||
· simp
|
||||
· constructor
|
||||
· exact IsClosed.isOpen_compl
|
||||
· assumption
|
||||
|
||||
|
||||
|
||||
theorem Divisor.support_cap_closed
|
||||
(D : Divisor)
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsClosed U) :
|
||||
IsClosed (U ∩ D.toFun.support) := by
|
||||
sorry
|
||||
|
||||
|
||||
theorem Divisor.support_cap_compact
|
||||
(D : Divisor)
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsCompact U) :
|
||||
Set.Finite (U ∩ (Function.support D)) := by
|
||||
|
||||
apply IsCompact.finite
|
||||
-- Target set is compact
|
||||
apply h₁U.of_isClosed_subset
|
||||
apply D.support_cap_closed h₁U.isClosed
|
||||
exact Set.inter_subset_left
|
||||
-- Target set is discrete
|
||||
apply DiscreteTopology.of_subset D.discreteSupport
|
||||
exact Set.inter_subset_right
|
||||
|
||||
|
||||
noncomputable def AnalyticOnNhd.zeroDivisor
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : AnalyticOnNhd ℂ f U) :
|
||||
Divisor where
|
||||
Divisor U where
|
||||
|
||||
toFun := by
|
||||
intro z
|
||||
if hz : z ∈ U then
|
||||
exact ((hf z hz).order.toNat : ℤ)
|
||||
else
|
||||
exact 0
|
||||
|
||||
supportInU := by
|
||||
intro z hz
|
||||
simp only [Function.mem_support] at hz
|
||||
simp only [Function.mem_support, ne_eq, dite_eq_else, Nat.cast_eq_zero, ENat.toNat_eq_zero, not_forall, not_or] at hz
|
||||
|
||||
toFun := by
|
||||
intro z
|
||||
if hz : z ∈ U then
|
||||
exact ((hf z hz).order.toNat : ℤ)
|
||||
else
|
||||
exact 0
|
||||
|
||||
discreteSupport := by
|
||||
simp_rw [← singletons_open_iff_discrete]
|
||||
|
@@ -1,6 +1,6 @@
|
||||
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.analyticOn_zeroSet
|
||||
import Nevanlinna.analyticOnNhd_zeroSet
|
||||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||||
|
@@ -666,7 +666,7 @@ theorem primitive_additivity'
|
||||
dsimp [ε']; simp
|
||||
have : |ε| = ε := by apply abs_of_pos h₁ε
|
||||
rw [this]
|
||||
apply (inv_mul_lt_iff zero_lt_two).mpr
|
||||
apply (inv_mul_lt_iff₀ zero_lt_two).mpr
|
||||
linarith
|
||||
have h₁ε' : 0 < ε' := by
|
||||
apply mul_pos _ h₁ε
|
||||
|
@@ -3,7 +3,7 @@ import Mathlib.Analysis.Analytic.Meromorphic
|
||||
import Mathlib.Topology.ContinuousOn
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.holomorphic
|
||||
import Nevanlinna.analyticOn_zeroSet
|
||||
import Nevanlinna.analyticOnNhd_zeroSet
|
||||
|
||||
|
||||
noncomputable def zeroDivisor
|
||||
|
Reference in New Issue
Block a user