Update mathlib

This commit is contained in:
Stefan Kebekus
2024-10-07 13:06:55 +02:00
parent 86da08ebc8
commit 9498d9f203
6 changed files with 24 additions and 88 deletions

View File

@@ -2,6 +2,7 @@ import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
import Nevanlinna.analyticAt
import Nevanlinna.divisor
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
@@ -9,89 +10,24 @@ open Real Filter MeasureTheory intervalIntegral
structure Divisor where
toFun :
-- This is not what we want. We want: locally finite
discreteSupport : DiscreteTopology (Function.support toFun)
instance : CoeFun Divisor (fun _ ) where
coe := Divisor.toFun
attribute [coe] Divisor.toFun
noncomputable def Divisor.deg
(D : Divisor) : := z, D z
noncomputable def Divisor.n_trunk
(D : Divisor) : := fun k r z Metric.ball 0 r, min k (D z)
noncomputable def Divisor.n
(D : Divisor) : := fun r z Metric.ball 0 r, D z
noncomputable def Divisor.N_trunk
(D : Divisor) : := fun k r (t : ) in (1)..r, (D.n_trunk k t) / t
theorem Divisor.support_cap_closed₁
{S U : Set }
(hS : DiscreteTopology S)
(hU : IsClosed U) :
IsClosed (U S) := by
rw [ isOpen_compl_iff]
rw [isOpen_iff_forall_mem_open]
intro x hx
by_cases h₁x : x U
· simp at hx
sorry
· use U
constructor
· simp
· constructor
· exact IsClosed.isOpen_compl
· assumption
theorem Divisor.support_cap_closed
(D : Divisor)
{U : Set }
(h₁U : IsClosed U) :
IsClosed (U D.toFun.support) := by
sorry
theorem Divisor.support_cap_compact
(D : Divisor)
{U : Set }
(h₁U : IsCompact U) :
Set.Finite (U (Function.support D)) := by
apply IsCompact.finite
-- Target set is compact
apply h₁U.of_isClosed_subset
apply D.support_cap_closed h₁U.isClosed
exact Set.inter_subset_left
-- Target set is discrete
apply DiscreteTopology.of_subset D.discreteSupport
exact Set.inter_subset_right
noncomputable def AnalyticOnNhd.zeroDivisor
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
Divisor where
Divisor U where
toFun := by
intro z
if hz : z U then
exact ((hf z hz).order.toNat : )
else
exact 0
supportInU := by
intro z hz
simp only [Function.mem_support] at hz
simp only [Function.mem_support, ne_eq, dite_eq_else, Nat.cast_eq_zero, ENat.toNat_eq_zero, not_forall, not_or] at hz
toFun := by
intro z
if hz : z U then
exact ((hf z hz).order.toNat : )
else
exact 0
discreteSupport := by
simp_rw [ singletons_open_iff_discrete]

View File

@@ -1,6 +1,6 @@
import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOn_zeroSet
import Nevanlinna.analyticOnNhd_zeroSet
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.specialFunctions_CircleIntegral_affine

View File

@@ -666,7 +666,7 @@ theorem primitive_additivity'
dsimp [ε']; simp
have : |ε| = ε := by apply abs_of_pos h₁ε
rw [this]
apply (inv_mul_lt_iff zero_lt_two).mpr
apply (inv_mul_lt_iff zero_lt_two).mpr
linarith
have h₁ε' : 0 < ε' := by
apply mul_pos _ h₁ε

View File

@@ -3,7 +3,7 @@ import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Topology.ContinuousOn
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.holomorphic
import Nevanlinna.analyticOn_zeroSet
import Nevanlinna.analyticOnNhd_zeroSet
noncomputable def zeroDivisor