cauchy riemann

This commit is contained in:
Stefan Kebekus 2024-04-28 21:09:38 +02:00
parent 53b5248e81
commit 90d3aceb95
3 changed files with 61 additions and 5 deletions

View File

@ -0,0 +1,50 @@
import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Complex.Basic
import Mathlib.Analysis.Calculus.LineDeriv.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs
import Mathlib.Analysis.Calculus.FDeriv.Basic
import Mathlib.Analysis.Complex.RealDeriv
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.Deriv.Linear
import Mathlib.Analysis.Complex.Conformal
import Mathlib.Analysis.Calculus.Conformal.NormedSpace
import Mathlib.Analysis.Calculus.FDeriv.Basic
import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
variable {z : } {f : }
example (h : DifferentiableAt f z) : f z = 0 := by
let A := fderiv f z
let B := fderiv f
let C : HasFDerivAt f (ContinuousLinearMap.restrictScalars (fderiv f z)) z := h.hasFDerivAt.restrictScalars
let D := ContinuousLinearMap.restrictScalars (fderiv f z)
let E := D 1
let F := D Complex.I
have : A (Complex.I • 1) = Complex.I • (A 1) := by
exact ContinuousLinearMap.map_smul_of_tower A Complex.I 1
let AR := (ContinuousLinearMap.restrictScalars (fderiv f z))
have : AR (Complex.I • 1) = Complex.I • (AR 1) := by
exact this
let f₂ := fun x ↦ lineDeriv f x ⟨0,1⟩
have : lineDeriv f z Complex.I = (fderiv f z) Complex.I := by
apply DifferentiableAt.lineDeriv_eq_fderiv
apply h.restrictScalars
have : D Complex.I = Complex.I * (D 1) := by
-- x
sorry
have : HasFDerivAt f A z := by
exact DifferentiableAt.hasFDerivAt h
have : HasFDerivAt f (B z) z := by
sorry
sorry

View File

View File

@ -1,10 +1,16 @@
import Mathlib.Analysis.Calculus.LineDeriv.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs
noncomputable def Real.laplace : (R [× n] → ) → () := by
noncomputable def Real.laplace : ( × ) → ( × ) := by
intro f
let f₁ := fun x ↦ lineDeriv f x 1
let f₁₁ := fun x ↦ lineDeriv f₁ x 1
let f₂ := fun x ↦ lineDeriv f x Complex.I
let f₂₂ := fun x ↦ lineDeriv f₂ x Complex.I
let f₁ := fun x ↦ lineDeriv f x ⟨1,0⟩
let f₁₁ := fun x ↦ lineDeriv f₁ x ⟨1,0⟩
let f₂ := fun x ↦ lineDeriv f x ⟨0,1⟩
let f₂₂ := fun x ↦ lineDeriv f₂ x ⟨0,1⟩
exact f₁₁ + f₂₂
structure Harmonic (f : × ) : Prop where
ker_Laplace : ∀ x, Real.laplace f x = 0
cont_Diff : ContDiff 2 f