cauchy riemann
This commit is contained in:
parent
53b5248e81
commit
90d3aceb95
|
@ -0,0 +1,50 @@
|
||||||
|
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||||
|
import Mathlib.Analysis.Complex.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||||
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||||
|
import Mathlib.Analysis.Complex.RealDeriv
|
||||||
|
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.Deriv.Linear
|
||||||
|
import Mathlib.Analysis.Complex.Conformal
|
||||||
|
import Mathlib.Analysis.Calculus.Conformal.NormedSpace
|
||||||
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
|
||||||
|
|
||||||
|
variable {z : ℂ} {f : ℂ → ℂ}
|
||||||
|
|
||||||
|
example (h : DifferentiableAt ℂ f z) : f z = 0 := by
|
||||||
|
|
||||||
|
let A := fderiv ℂ f z
|
||||||
|
let B := fderiv ℝ f
|
||||||
|
|
||||||
|
let C : HasFDerivAt f (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)) z := h.hasFDerivAt.restrictScalars ℝ
|
||||||
|
let D := ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)
|
||||||
|
let E := D 1
|
||||||
|
let F := D Complex.I
|
||||||
|
|
||||||
|
have : A (Complex.I • 1) = Complex.I • (A 1) := by
|
||||||
|
exact ContinuousLinearMap.map_smul_of_tower A Complex.I 1
|
||||||
|
|
||||||
|
let AR := (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z))
|
||||||
|
have : AR (Complex.I • 1) = Complex.I • (AR 1) := by
|
||||||
|
exact this
|
||||||
|
|
||||||
|
let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0,1⟩
|
||||||
|
have : lineDeriv ℝ f z Complex.I = (fderiv ℝ f z) Complex.I := by
|
||||||
|
apply DifferentiableAt.lineDeriv_eq_fderiv
|
||||||
|
apply h.restrictScalars ℝ
|
||||||
|
|
||||||
|
have : D Complex.I = Complex.I * (D 1) := by
|
||||||
|
-- x
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
have : HasFDerivAt f A z := by
|
||||||
|
exact DifferentiableAt.hasFDerivAt h
|
||||||
|
|
||||||
|
have : HasFDerivAt f (B z) z := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
|
@ -1,10 +1,16 @@
|
||||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||||
|
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||||
|
|
||||||
noncomputable def Real.laplace : (R [× n] → ℝ) → (ℂ → ℝ) := by
|
noncomputable def Real.laplace : (ℝ × ℝ → ℝ) → (ℝ × ℝ → ℝ) := by
|
||||||
intro f
|
intro f
|
||||||
|
|
||||||
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
let f₁ := fun x ↦ lineDeriv ℝ f x ⟨1,0⟩
|
||||||
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x 1
|
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x ⟨1,0⟩
|
||||||
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0,1⟩
|
||||||
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x Complex.I
|
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x ⟨0,1⟩
|
||||||
|
|
||||||
exact f₁₁ + f₂₂
|
exact f₁₁ + f₂₂
|
||||||
|
|
||||||
|
structure Harmonic (f : ℝ × ℝ → ℝ) : Prop where
|
||||||
|
ker_Laplace : ∀ x, Real.laplace f x = 0
|
||||||
|
cont_Diff : ContDiff ℝ 2 f
|
||||||
|
|
Loading…
Reference in New Issue