Update firstMain.lean
This commit is contained in:
parent
c6e72864c8
commit
9068ad406e
@ -1,14 +1,94 @@
|
||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||
import Nevanlinna.divisor
|
||||
import Nevanlinna.stronglyMeromorphicOn
|
||||
import Nevanlinna.meromorphicOn_divisor
|
||||
|
||||
open Real
|
||||
|
||||
|
||||
noncomputable def Divisor.Nevanlinna.n
|
||||
(D : Divisor ⊤) :
|
||||
ℝ → ℤ :=
|
||||
fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, D z
|
||||
|
||||
noncomputable def Divisor.Nevanlinna.integratedCounting
|
||||
(D : Divisor ⊤) :
|
||||
-- Lang p. 164
|
||||
noncomputable def MeromorphicOn.N_zero
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (D z) * log (r * ‖z‖⁻¹)
|
||||
fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (max 0 (h₁f.divisor z)) * log (r * ‖z‖⁻¹)
|
||||
|
||||
noncomputable def MeromorphicOn.N_infty
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (max 0 (-(h₁f.divisor z))) * log (r * ‖z‖⁻¹)
|
||||
|
||||
theorem Nevanlinna_counting
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
h₁f.N_zero - h₁f.N_infty = fun r ↦ ∑ᶠ z ∈ Metric.ball (0 : ℂ) r, (h₁f.divisor z) * log (r * ‖z‖⁻¹) := by
|
||||
sorry
|
||||
|
||||
--
|
||||
|
||||
noncomputable def logpos : ℝ → ℝ :=
|
||||
fun r ↦ max 0 (log r)
|
||||
|
||||
theorem loglogpos
|
||||
{r : ℝ} :
|
||||
log r = logpos r - logpos r⁻¹ := by
|
||||
unfold logpos
|
||||
rw [log_inv]
|
||||
by_cases h : 0 ≤ log r
|
||||
· simp [h]
|
||||
· simp at h
|
||||
have : 0 ≤ -log r := Left.nonneg_neg_iff.2 (le_of_lt h)
|
||||
simp [h, this]
|
||||
exact neg_nonneg.mp this
|
||||
|
||||
--
|
||||
|
||||
noncomputable def MeromorphicOn.m_infty
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖
|
||||
|
||||
theorem Nevanlinna_proximity
|
||||
{f : ℂ → ℂ}
|
||||
{r : ℝ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
(2 * π)⁻¹ * ∫ x in (0)..(2 * π), log ‖f (circleMap 0 r x)‖ = (h₁f.m_infty r) - (h₁f.inv.m_infty r) := by
|
||||
unfold MeromorphicOn.m_infty
|
||||
rw [← mul_sub]; congr
|
||||
rw [← intervalIntegral.integral_sub]; congr
|
||||
funext x
|
||||
simp_rw [loglogpos]; congr
|
||||
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
|
||||
--
|
||||
sorry
|
||||
|
||||
noncomputable def MeromorphicOn.T_infty
|
||||
{f : ℂ → ℂ}
|
||||
(hf : MeromorphicOn f ⊤) :
|
||||
ℝ → ℝ :=
|
||||
hf.m_infty + hf.N_infty
|
||||
|
||||
theorem Nevanlinna_firstMain₁
|
||||
{f : ℂ → ℂ}
|
||||
(h₁f : MeromorphicOn f ⊤)
|
||||
(h₂f : StronglyMeromorphicAt f 0)
|
||||
(h₃f : f 0 ≠ 0) :
|
||||
(fun r ↦ log ‖f 0‖) + h₁f.inv.T_infty = h₁f.T_infty := by
|
||||
funext r
|
||||
simp
|
||||
unfold MeromorphicOn.T_infty
|
||||
unfold MeromorphicOn.N_infty
|
||||
unfold MeromorphicOn.m_infty
|
||||
simp
|
||||
|
||||
sorry
|
||||
|
||||
theorem Nevanlinna_firstMain₂
|
||||
{f : ℂ → ℂ}
|
||||
{a : ℂ}
|
||||
{r : ℝ}
|
||||
(h₁f : MeromorphicOn f ⊤) :
|
||||
|(h₁f.T_infty r) - ((h₁f.sub (MeromorphicOn.const a)).T_infty r)| ≤ logpos ‖a‖ + log 2 := by
|
||||
sorry
|
||||
|
Loading…
Reference in New Issue
Block a user