Update mathlib and work on Jensen Formula
This commit is contained in:
parent
7e3ccaf7d5
commit
8d72fae4dc
@ -76,35 +76,32 @@ theorem jensen_case_R_eq_one
|
|||||||
rw [finsum_eq_sum_of_support_subset _ h₁G]
|
rw [finsum_eq_sum_of_support_subset _ h₁G]
|
||||||
--
|
--
|
||||||
intro x hx
|
intro x hx
|
||||||
|
have : z ≠ x := by
|
||||||
|
by_contra hCon
|
||||||
|
rw [← hCon] at hx
|
||||||
simp at hx
|
simp at hx
|
||||||
|
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
|
||||||
|
unfold MeromorphicOn.divisor at hx
|
||||||
abel
|
simp [h₁z] at hx
|
||||||
|
|
||||||
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
|
|
||||||
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
|
|
||||||
intro s hs
|
|
||||||
simp at hs
|
|
||||||
simp
|
|
||||||
intro h₂s
|
|
||||||
rw [h₂s] at h₂z
|
|
||||||
tauto
|
tauto
|
||||||
exact this
|
apply zpow_ne_zero
|
||||||
|
simpa
|
||||||
-- ∏ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
|
|
||||||
have : ∀ x ∈ (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - ↑x) ^ (h₁f.order x).toNat ≠ 0 := by
|
|
||||||
intro s hs
|
|
||||||
simp at hs
|
|
||||||
simp
|
|
||||||
intro h₂s
|
|
||||||
rw [h₂s] at h₂z
|
|
||||||
tauto
|
|
||||||
rw [Finset.prod_ne_zero_iff]
|
|
||||||
exact this
|
|
||||||
|
|
||||||
-- Complex.abs (F z) ≠ 0
|
-- Complex.abs (F z) ≠ 0
|
||||||
simp
|
simp
|
||||||
exact h₂F z h₁z
|
exact h₃F ⟨z, h₁z⟩
|
||||||
|
--
|
||||||
|
rw [Finset.prod_ne_zero_iff]
|
||||||
|
intro x hx
|
||||||
|
have : z ≠ x := by
|
||||||
|
by_contra hCon
|
||||||
|
rw [← hCon] at hx
|
||||||
|
simp at hx
|
||||||
|
rw [← StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
|
||||||
|
unfold MeromorphicOn.divisor at hx
|
||||||
|
simp [h₁z] at hx
|
||||||
|
tauto
|
||||||
|
apply zpow_ne_zero
|
||||||
|
simpa
|
||||||
|
|
||||||
|
|
||||||
have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
have int_logAbs_f_eq_int_G : ∫ (x : ℝ) in (0)..2 * π, log ‖f (circleMap 0 1 x)‖ = ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) := by
|
||||||
@ -115,27 +112,39 @@ theorem jensen_case_R_eq_one
|
|||||||
simp
|
simp
|
||||||
|
|
||||||
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
|
have t₀ : {a | a ∈ Ι 0 (2 * π) ∧ ¬log ‖f (circleMap 0 1 a)‖ = G (circleMap 0 1 a)}
|
||||||
⊆ (circleMap 0 1)⁻¹' (Metric.closedBall 0 1 ∩ f⁻¹' {0}) := by
|
⊆ (circleMap 0 1)⁻¹' (h₃f.toFinset) := by
|
||||||
intro a ha
|
intro a ha
|
||||||
simp at ha
|
simp at ha
|
||||||
simp
|
simp
|
||||||
by_contra C
|
by_contra C
|
||||||
have : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
|
have t₀ : (circleMap 0 1 a) ∈ Metric.closedBall 0 1 :=
|
||||||
circleMap_mem_closedBall 0 (zero_le_one' ℝ) a
|
circleMap_mem_closedBall 0 (zero_le_one' ℝ) a
|
||||||
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
|
have t₁ : f (circleMap 0 1 a) ≠ 0 := by
|
||||||
|
let A := h₁f (circleMap 0 1 a) t₀
|
||||||
|
rw [← A.order_eq_zero_iff]
|
||||||
|
unfold MeromorphicOn.divisor at C
|
||||||
|
simp [t₀] at C
|
||||||
|
rcases C with C₁|C₂
|
||||||
|
· assumption
|
||||||
|
· let B := h₁f.meromorphicOn.order_ne_top' h₁U
|
||||||
|
let C := fun q ↦ B q ⟨(circleMap 0 1 a), t₀⟩
|
||||||
|
rw [C₂] at C
|
||||||
|
have : ∃ u : (Metric.closedBall (0 : ℂ) 1), (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
||||||
|
use ⟨(0 : ℂ), (by simp)⟩
|
||||||
|
let H := h₁f 0 (by simp)
|
||||||
|
let K := H.order_eq_zero_iff.2 h₂f
|
||||||
|
rw [K]
|
||||||
|
simp
|
||||||
|
let D := C this
|
||||||
|
tauto
|
||||||
|
exact ha.2 (decompose_f (circleMap 0 1 a) t₀ t₁)
|
||||||
|
|
||||||
apply Set.Countable.mono t₀
|
apply Set.Countable.mono t₀
|
||||||
apply Set.Countable.preimage_circleMap
|
apply Set.Countable.preimage_circleMap
|
||||||
apply Set.Finite.countable
|
apply Set.Finite.countable
|
||||||
let A := finiteZeros h₁U h₂U h₁f h'₂f
|
exact Finset.finite_toSet h₃f.toFinset
|
||||||
|
--
|
||||||
have : (Metric.closedBall 0 1 ∩ f ⁻¹' {0}) = (Metric.closedBall 0 1).restrict f ⁻¹' {0} := by
|
|
||||||
ext z
|
|
||||||
simp
|
simp
|
||||||
tauto
|
|
||||||
rw [this]
|
|
||||||
exact Set.Finite.image Subtype.val A
|
|
||||||
exact Ne.symm (zero_ne_one' ℝ)
|
|
||||||
|
|
||||||
|
|
||||||
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x)
|
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x)
|
||||||
|
@ -5,7 +5,7 @@
|
|||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"scope": "",
|
"scope": "",
|
||||||
"rev": "7cf807751deab8d4943d867898dc1b31d61b746a",
|
"rev": "134c6ee3da5185da90b69d05697c85bfba57e82e",
|
||||||
"name": "mathlib",
|
"name": "mathlib",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": null,
|
"inputRev": null,
|
||||||
|
Loading…
Reference in New Issue
Block a user