Update mathlib and work on Jensen Formula

This commit is contained in:
Stefan Kebekus
2024-12-03 10:21:38 +01:00
parent 7e3ccaf7d5
commit 8d72fae4dc
2 changed files with 48 additions and 39 deletions

View File

@@ -76,35 +76,32 @@ theorem jensen_case_R_eq_one
rw [finsum_eq_sum_of_support_subset _ h₁G]
--
intro x hx
simp at hx
abel
-- ∀ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
have : x (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - x) ^ (h₁f.order x).toNat 0 := by
intro s hs
simp at hs
simp
intro h₂s
rw [h₂s] at h₂z
have : z x := by
by_contra hCon
rw [ hCon] at hx
simp at hx
rw [ StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
exact this
-- ∏ x ∈ ⋯.toFinset, Complex.abs (z - ↑x) ^ (h'₁f.order x).toNat ≠ 0
have : x (finiteZeros h₁U h₂U h₁f h'₂f).toFinset, Complex.abs (z - x) ^ (h₁f.order x).toNat 0 := by
intro s hs
simp at hs
simp
intro h₂s
rw [h₂s] at h₂z
tauto
rw [Finset.prod_ne_zero_iff]
exact this
apply zpow_ne_zero
simpa
-- Complex.abs (F z) ≠ 0
simp
exact hF z h₁z
exact hF z, h₁z
--
rw [Finset.prod_ne_zero_iff]
intro x hx
have : z x := by
by_contra hCon
rw [ hCon] at hx
simp at hx
rw [ StronglyMeromorphicAt.order_eq_zero_iff] at h₂z
unfold MeromorphicOn.divisor at hx
simp [h₁z] at hx
tauto
apply zpow_ne_zero
simpa
have int_logAbs_f_eq_int_G : (x : ) in (0)..2 * π, log f (circleMap 0 1 x) = (x : ) in (0)..2 * π, G (circleMap 0 1 x) := by
@@ -115,27 +112,39 @@ theorem jensen_case_R_eq_one
simp
have t₀ : {a | a Ι 0 (2 * π) ¬log f (circleMap 0 1 a) = G (circleMap 0 1 a)}
(circleMap 0 1)⁻¹' (Metric.closedBall 0 1 f⁻¹' {0}) := by
(circleMap 0 1)⁻¹' (h₃f.toFinset) := by
intro a ha
simp at ha
simp
by_contra C
have : (circleMap 0 1 a) Metric.closedBall 0 1 :=
have t₀ : (circleMap 0 1 a) Metric.closedBall 0 1 :=
circleMap_mem_closedBall 0 (zero_le_one' ) a
exact ha.2 (decompose_f (circleMap 0 1 a) this C)
have t₁ : f (circleMap 0 1 a) 0 := by
let A := h₁f (circleMap 0 1 a) t₀
rw [ A.order_eq_zero_iff]
unfold MeromorphicOn.divisor at C
simp [t₀] at C
rcases C with C₁|C₂
· assumption
· let B := h₁f.meromorphicOn.order_ne_top' h₁U
let C := fun q B q (circleMap 0 1 a), t₀
rw [C₂] at C
have : u : (Metric.closedBall (0 : ) 1), (h₁f u u.2).meromorphicAt.order := by
use (0 : ), (by simp)
let H := h₁f 0 (by simp)
let K := H.order_eq_zero_iff.2 h₂f
rw [K]
simp
let D := C this
tauto
exact ha.2 (decompose_f (circleMap 0 1 a) t₀ t₁)
apply Set.Countable.mono t₀
apply Set.Countable.preimage_circleMap
apply Set.Finite.countable
let A := finiteZeros h₁U h₂U h₁f h'₂f
have : (Metric.closedBall 0 1 f ⁻¹' {0}) = (Metric.closedBall 0 1).restrict f ⁻¹' {0} := by
ext z
simp
tauto
rw [this]
exact Set.Finite.image Subtype.val A
exact Ne.symm (zero_ne_one' )
exact Finset.finite_toSet h₃f.toFinset
--
simp
have decompose_int_G : (x : ) in (0)..2 * π, G (circleMap 0 1 x)