working…
This commit is contained in:
parent
321ceba46b
commit
8d2339a769
|
@ -1,5 +1,6 @@
|
||||||
import Mathlib.Analysis.Complex.TaylorSeries
|
import Mathlib.Analysis.Complex.TaylorSeries
|
||||||
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
||||||
|
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
||||||
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
||||||
import Nevanlinna.cauchyRiemann
|
import Nevanlinna.cauchyRiemann
|
||||||
import Nevanlinna.partialDeriv
|
import Nevanlinna.partialDeriv
|
||||||
|
@ -219,29 +220,39 @@ theorem primitive_fderivAtBasepoint
|
||||||
rw [Filter.eventually_iff_exists_mem]
|
rw [Filter.eventually_iff_exists_mem]
|
||||||
|
|
||||||
let s := f⁻¹' Metric.ball (f 0) c
|
let s := f⁻¹' Metric.ball (f 0) c
|
||||||
have : IsOpen s := by
|
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
|
||||||
apply IsOpen.mem_nhds
|
have h₂s : 0 ∈ s := by
|
||||||
apply IsOpen.preimage hf
|
|
||||||
exact Metric.isOpen_ball
|
|
||||||
|
|
||||||
|
|
||||||
--sorry
|
|
||||||
--apply isOpen_iff_ball_subset
|
|
||||||
|
|
||||||
use s
|
|
||||||
constructor
|
|
||||||
· apply IsOpen.mem_nhds
|
|
||||||
apply IsOpen.preimage hf
|
|
||||||
exact Metric.isOpen_ball
|
|
||||||
apply Set.mem_preimage.mpr
|
apply Set.mem_preimage.mpr
|
||||||
exact Metric.mem_ball_self hc
|
exact Metric.mem_ball_self hc
|
||||||
· intro y hy
|
|
||||||
have : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ c * |y.re| := by
|
|
||||||
let A := intervalIntegral.norm_integral_le_of_norm_le_const_ae
|
|
||||||
|
|
||||||
|
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
|
||||||
|
|
||||||
|
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < c := by
|
||||||
|
intro y hy
|
||||||
|
exact mem_ball_iff_norm.mp (h₂ε hy)
|
||||||
|
|
||||||
|
use Metric.ball 0 ε
|
||||||
|
constructor
|
||||||
|
· exact Metric.ball_mem_nhds 0 h₁ε
|
||||||
|
· intro y hy
|
||||||
|
have h₁y : |y.re| < ε := by
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
have : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ c * |y.re - 0| := by
|
||||||
|
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||||
|
intro x hx
|
||||||
|
have h₁x : |x| < ε := by sorry
|
||||||
|
apply le_of_lt
|
||||||
|
apply h₃ε { re := x, im := 0 }
|
||||||
|
simp
|
||||||
|
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
||||||
|
rw [this]
|
||||||
|
rw [Complex.abs_ofReal]
|
||||||
|
exact h₁x
|
||||||
|
|
||||||
|
sorry
|
||||||
|
/-
|
||||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by apply norm_add_le
|
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by apply norm_add_le
|
||||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||||
|
@ -253,14 +264,7 @@ theorem primitive_fderivAtBasepoint
|
||||||
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
||||||
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
||||||
_ ≤
|
_ ≤
|
||||||
|
-/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
|
@ -0,0 +1,40 @@
|
||||||
|
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||||
|
--import Mathlib.Analysis.Complex.Module
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
example simplificationTest₁
|
||||||
|
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] [IsScalarTower ℝ ℂ E]
|
||||||
|
{v : E}
|
||||||
|
{z : ℂ} :
|
||||||
|
z • v = z.re • v + Complex.I • z.im • v := by
|
||||||
|
|
||||||
|
/-
|
||||||
|
An attempt to write "rw [add_smul]" will fail with "did not find instance of
|
||||||
|
the pattern in the target -- expression (?r + ?s) • ?x".
|
||||||
|
-/
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
theorem add_smul'
|
||||||
|
(𝕜₁ : Type*) [NontriviallyNormedField ℝ]
|
||||||
|
{𝕜₂ : Type*} [NontriviallyNormedField ℂ] [NormedAlgebra ℝ ℂ]
|
||||||
|
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] [IsScalarTower ℝ ℂ E]
|
||||||
|
{v : E}
|
||||||
|
{r s : ℂ} :
|
||||||
|
(r + s) • v = r • v + s • v :=
|
||||||
|
Module.add_smul r s v
|
||||||
|
|
||||||
|
|
||||||
|
theorem smul_add' (a : M) (b₁ b₂ : A) : a • (b₁ + b₂) = a • b₁ + a • b₂ :=
|
||||||
|
DistribSMul.smul_add _ _ _
|
||||||
|
#align smul_add smul_add
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
example simplificationTest₂
|
||||||
|
{v : E}
|
||||||
|
{z : ℂ} :
|
||||||
|
z • v = z.re • v + Complex.I • z.im • v := by
|
||||||
|
sorry
|
Loading…
Reference in New Issue