diff --git a/Nevanlinna/meromorphicOn.lean b/Nevanlinna/meromorphicOn.lean index ac66cb9..d88a1c9 100644 --- a/Nevanlinna/meromorphicOn.lean +++ b/Nevanlinna/meromorphicOn.lean @@ -14,13 +14,14 @@ theorem MeromorphicOn.order_ne_top {U : Set ℂ} (h₁U : IsConnected U) (h₁f : MeromorphicOn f U) : - (∃ z₀ : U, (h₁f z₀.1 z₀.2).order ≠ ⊤) ↔ (∀ z : U, (h₁f z.1 z.2).order ≠ ⊤) := by + (∃ z₀ : U, (h₁f z₀.1 z₀.2).order = ⊤) ↔ (∀ z : U, (h₁f z.1 z.2).order = ⊤) := by constructor · intro h obtain ⟨h₁z₀, h₂z₀⟩ := h intro hz + sorry · intro h diff --git a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean index 691fc76..a63406a 100644 --- a/Nevanlinna/stronglyMeromorphicOn_eliminate.lean +++ b/Nevanlinna/stronglyMeromorphicOn_eliminate.lean @@ -10,16 +10,6 @@ import Nevanlinna.mathlibAddOn open scoped Interval Topology open Real Filter MeasureTheory intervalIntegral -theorem MeromorphicOn.order_ne_top - {f : ℂ → ℂ} - {U : Set ℂ} - (h₁U : IsConnected U) - (h₂U : IsCompact U) - (h₁f : MeromorphicOn f U) - (h₂f : ∃ z₀ ∈ U, f z₀ ≠ 0) : - ∀ hz : z ∈ U, (h₁f z hz).order ≠ ⊤ := by - - sorry theorem MeromorphicOn.decompose