Create analyticOn_zeroSet.lean

This commit is contained in:
Stefan Kebekus
2024-08-20 07:46:18 +02:00
parent 5e7dd06d4c
commit 8a62e60b15

View File

@@ -0,0 +1,188 @@
import Init.Classical
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Topology.ContinuousOn
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.holomorphic
theorem AnalyticOn.order_eq_nat_iff
{f : }
{U : Set }
{z₀ : }
(hf : AnalyticOn f U)
(hz₀ : z₀ U)
(n : ) :
(hf z₀ hz₀).order = n (g : ), AnalyticOn g U g z₀ 0 z, f z = (z - z₀) ^ n g z := by
constructor
-- Direction →
intro hn
obtain gloc, h₁gloc, h₂gloc, h₃gloc := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
-- removable singularity removed
let g : := fun z if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
-- Describe g near z₀
have g_near_z₀ : (z : ) in nhds z₀, g z = gloc z := by
rw [eventually_nhds_iff]
obtain t, h₁t, h₂t, h₃t := eventually_nhds_iff.1 h₃gloc
use t
constructor
· intro y h₁y
by_cases h₂y : y = z₀
· dsimp [g]; simp [h₂y]
· dsimp [g]; simp [h₂y]
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
exact h₁t y h₁y
norm_num
rw [sub_eq_zero]
tauto
· constructor
· assumption
· assumption
-- Describe g near points z₁ that are different from z₀
have g_near_z₁ {z₁ : } : z₁ z₀ (z : ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
intro hz₁
rw [eventually_nhds_iff]
use {z₀}
constructor
· intro y hy
simp at hy
simp [g, hy]
· exact isOpen_compl_singleton, hz₁
-- Use g and show that it has all required properties
use g
constructor
· -- AnalyticOn g U
intro z h₁z
by_cases h₂z : z = z₀
· rw [h₂z]
apply AnalyticAt.congr h₁gloc
exact Filter.EventuallyEq.symm g_near_z₀
· simp_rw [eq_comm] at g_near_z₁
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
apply AnalyticAt.div
exact hf z h₁z
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
simp
rw [sub_eq_zero]
tauto
· constructor
· simp [g]; tauto
· intro z
by_cases h₂z : z = z₀
· rw [h₂z, g_near_z₀.self_of_nhds]
exact h₃gloc.self_of_nhds
· rw [(g_near_z₁ h₂z).self_of_nhds]
simp [h₂z]
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel]
simp; norm_num
rw [sub_eq_zero]
tauto
-- direction ←
intro h
obtain g, h₁g, h₂g, h₃g := h
rw [AnalyticAt.order_eq_nat_iff]
use g
exact h₁g z₀ hz₀, h₂g, Filter.eventually_of_forall h₃g
theorem AnalyticOn.order_eq_nat_iff'
{f : }
{U : Set }
{A : Finset U}
(hf : AnalyticOn f U)
(n : A ) :
a : A, (hf a (Subtype.coe_prop a.val)).order = n a (g : ), AnalyticOn g U ( a, g a 0) z, f z = ( a, (z - a) ^ (n a)) g z := by
apply Finset.induction
let a : A := by sorry
let b : := by sorry
let u : U := by sorry
let X := n a
have : a = (3 : ) := by sorry
have : b A := by sorry
have : a U := by exact Subtype.coe_prop a.val
let Y := a : A, (hf a (Subtype.coe_prop a.val)).order = n a
--∀ a : A, (hf (ha a)).order = ↑(n a) →
intro hn
obtain gloc, h₁gloc, h₂gloc, h₃gloc := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
-- Define a candidate function
let g : := fun z if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
-- Describe g near z₀
have g_near_z₀ : (z : ) in nhds z₀, g z = gloc z := by
rw [eventually_nhds_iff]
obtain t, h₁t, h₂t, h₃t := eventually_nhds_iff.1 h₃gloc
use t
constructor
· intro y h₁y
by_cases h₂y : y = z₀
· dsimp [g]; simp [h₂y]
· dsimp [g]; simp [h₂y]
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
exact h₁t y h₁y
norm_num
rw [sub_eq_zero]
tauto
· constructor
· assumption
· assumption
-- Describe g near points z₁ different from z₀
have g_near_z₁ {z₁ : } : z₁ z₀ (z : ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
intro hz₁
rw [eventually_nhds_iff]
use {z₀}
constructor
· intro y hy
simp at hy
simp [g, hy]
· exact isOpen_compl_singleton, hz₁
-- Use g and show that it has all required properties
use g
constructor
· -- AnalyticOn g U
intro z h₁z
by_cases h₂z : z = z₀
· rw [h₂z]
apply AnalyticAt.congr h₁gloc
exact Filter.EventuallyEq.symm g_near_z₀
· simp_rw [eq_comm] at g_near_z₁
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
apply AnalyticAt.div
exact hf z h₁z
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
simp
rw [sub_eq_zero]
tauto
· constructor
· simp [g]; tauto
· intro z
by_cases h₂z : z = z₀
· rw [h₂z, g_near_z₀.self_of_nhds]
exact h₃gloc.self_of_nhds
· rw [(g_near_z₁ h₂z).self_of_nhds]
simp [h₂z]
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel]
simp; norm_num
rw [sub_eq_zero]
tauto