Working…

This commit is contained in:
Stefan Kebekus 2024-11-14 13:47:24 +01:00
parent ebeba74314
commit 89abb9190f
3 changed files with 129 additions and 15 deletions

View File

@ -37,21 +37,6 @@ theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
exact ContDiff.const_smul c hf exact ContDiff.const_smul c hf
-- Mathlib.Analysis.Analytic.Meromorphic
theorem meromorphicAt_congr
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhdsWithin x {x}ᶜ] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
⟨fun hf ↦ hf.congr h, fun hg ↦ hg.congr h.symm⟩
theorem meromorphicAt_congr'
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)
open Topology Filter open Topology Filter

View File

@ -7,6 +7,22 @@ open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral open Real Filter MeasureTheory intervalIntegral
theorem meromorphicAt_congr
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhdsWithin x {x}ᶜ] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
⟨fun hf ↦ hf.congr h, fun hg ↦ hg.congr h.symm⟩
theorem meromorphicAt_congr'
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
{f : } {f : }
{z₀ : } {z₀ : }
@ -53,6 +69,7 @@ theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
· exact h₂N · exact h₂N
· exact h₃N · exact h₃N
theorem MeromorphicAt.order_congr theorem MeromorphicAt.order_congr
{f₁ f₂ : } {f₁ f₂ : }
{z₀ : } {z₀ : }
@ -73,3 +90,58 @@ theorem MeromorphicAt.order_congr
· constructor · constructor
· assumption · assumption
· exact EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (_root_.id (EventuallyEq.symm h)) · exact EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (_root_.id (EventuallyEq.symm h))
theorem MeromorphicAt.order_mul
{f₁ f₂ : }
{z₀ : }
(hf₁ : MeromorphicAt f₁ z₀)
(hf₂ : MeromorphicAt f₂ z₀) :
(hf₁.mul hf₂).order = hf₁.order + hf₂.order := by
by_cases h₂f₁ : hf₁.order =
· simp [h₂f₁]
rw [hf₁.order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff] at h₂f₁
rw [(hf₁.mul hf₂).order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
use t
constructor
· intro y h₁y h₂y
simp; left
rw [h₁t y h₁y h₂y]
· exact ⟨h₂t, h₃t⟩
· by_cases h₂f₂ : hf₂.order =
· simp [h₂f₂]
rw [hf₂.order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff] at h₂f₂
rw [(hf₁.mul hf₂).order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
use t
constructor
· intro y h₁y h₂y
simp; right
rw [h₁t y h₁y h₂y]
· exact ⟨h₂t, h₃t⟩
· have h₃f₁ := Eq.symm (WithTop.coe_untop hf₁.order h₂f₁)
have h₃f₂ := Eq.symm (WithTop.coe_untop hf₂.order h₂f₂)
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (hf₁.order_eq_int_iff (hf₁.order.untop h₂f₁)).1 h₃f₁
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (hf₂.order_eq_int_iff (hf₂.order.untop h₂f₂)).1 h₃f₂
rw [h₃f₁, h₃f₂, ← WithTop.coe_add]
rw [MeromorphicAt.order_eq_int_iff]
use g₁ * g₂
constructor
· exact AnalyticAt.mul h₁g₁ h₁g₂
· constructor
· simp; tauto
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₃g₁)
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₃g₂)
rw [eventually_nhdsWithin_iff, eventually_nhds_iff]
use t₁ ∩ t₂
constructor
· intro y h₁y h₂y
simp
rw [h₁t₁ y h₁y.1 h₂y, h₁t₂ y h₁y.2 h₂y]
simp
rw [zpow_add' (by left; exact sub_ne_zero_of_ne h₂y)]
group
· constructor
· exact IsOpen.inter h₂t₁ h₂t₂
· exact Set.mem_inter h₃t₁ h₃t₂

View File

@ -1,4 +1,5 @@
import Mathlib.Analysis.Analytic.Meromorphic import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Algebra.Order.AddGroupWithTop
import Nevanlinna.analyticAt import Nevanlinna.analyticAt
import Nevanlinna.mathlibAddOn import Nevanlinna.mathlibAddOn
import Nevanlinna.meromorphicAt import Nevanlinna.meromorphicAt
@ -199,6 +200,8 @@ theorem StronglyMeromorphicAt.localIdentity
/- Make strongly MeromorphicAt -/ /- Make strongly MeromorphicAt -/
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
{f : } {f : }
@ -346,3 +349,57 @@ theorem makeStronglyMeromorphic_id
tauto tauto
· exact m₁ (StronglyMeromorphicAt.meromorphicAt hf) z hz · exact m₁ (StronglyMeromorphicAt.meromorphicAt hf) z hz
theorem StronglyMeromorphicAt.decompose
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : h₁f.meromorphicAt.order ≠ ) :
∃ g : , (AnalyticAt g z₀)
∧ (g z₀ ≠ 0)
∧ (f = (fun z ↦ (z-z₀) ^ (h₁f.meromorphicAt.order.untop h₂f)) * g) := by
let n := - h₁f.meromorphicAt.order.untop h₂f
let g₁ := (fun z ↦ (z-z₀) ^ (-h₁f.meromorphicAt.order.untop h₂f)) * f
let g₁₁ := fun z ↦ (z-z₀) ^ (-h₁f.meromorphicAt.order.untop h₂f)
have h₁g₁₁ : MeromorphicAt g₁₁ z₀ := by
apply MeromorphicAt.zpow
apply AnalyticAt.meromorphicAt
apply AnalyticAt.sub
apply analyticAt_id
exact analyticAt_const
have h₂g₁₁ : h₁g₁₁.order = - h₁f.meromorphicAt.order.untop h₂f := by
rw [← WithTop.LinearOrderedAddCommGroup.coe_neg]
rw [h₁g₁₁.order_eq_int_iff]
use 1
constructor
· exact analyticAt_const
· constructor
· simp
· apply eventually_nhdsWithin_of_forall
simp [g₁₁]
have h₁g₁ : MeromorphicAt g₁ z₀ := h₁g₁₁.mul h₁f.meromorphicAt
have h₂g₁ : h₁g₁.order = 0 := by
rw [h₁g₁₁.order_mul h₁f.meromorphicAt]
rw [h₂g₁₁]
simp
rw [add_comm]
rw [LinearOrderedAddCommGroupWithTop.add_neg_cancel_of_ne_top h₂f]
let g := h₁g₁.makeStronglyMeromorphicAt
use g
have h₁g : StronglyMeromorphicAt g z₀ := by
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic h₁g₁
have h₂g : h₁g.meromorphicAt.order = 0 := by
sorry
constructor
· apply analytic
· sorry
· exact h₁g
· constructor
· sorry
· sorry