Update holomorphic_zero.lean
This commit is contained in:
parent
4b25e0694c
commit
83b3e0da1e
|
@ -1,10 +1,36 @@
|
|||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.holomorphic
|
||||
|
||||
|
||||
def zeroDivisor
|
||||
{f : ℂ → ℂ}
|
||||
{R : ℝ}
|
||||
(h₁f : ∀ z ∈ Metric.closedBall z R, HolomorphicAt f z)
|
||||
(h₂f : ∃ z ∈ Metric.closedBall z R, f z ≠ 0) :
|
||||
noncomputable def zeroDivisor
|
||||
(f : ℂ → ℂ) :
|
||||
ℂ → ℕ := by
|
||||
intro z
|
||||
if hf : AnalyticAt ℂ f z then
|
||||
exact hf.order.toNat
|
||||
else
|
||||
exact 0
|
||||
|
||||
|
||||
theorem discreteZeros
|
||||
{f : ℂ → ℂ} :
|
||||
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
||||
sorry
|
||||
|
||||
|
||||
theorem zeroDivisor_finiteOnCompact
|
||||
{f : ℂ → ℂ}
|
||||
{s : Set ℂ}
|
||||
(hs : IsCompact s) :
|
||||
Set.Finite (s ∩ Function.support (zeroDivisor f)) := by
|
||||
sorry
|
||||
|
||||
|
||||
theorem eliminatingZeros
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
{R : ℝ}
|
||||
(h₁f : ∀ z ∈ Metric.ball z₀ R, HolomorphicAt f z)
|
||||
(h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) :
|
||||
∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by
|
||||
sorry
|
||||
|
|
Loading…
Reference in New Issue