Update holomorphic_zero.lean
This commit is contained in:
parent
4b25e0694c
commit
83b3e0da1e
|
@ -1,10 +1,36 @@
|
||||||
|
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||||
import Nevanlinna.holomorphic
|
import Nevanlinna.holomorphic
|
||||||
|
|
||||||
|
|
||||||
def zeroDivisor
|
noncomputable def zeroDivisor
|
||||||
{f : ℂ → ℂ}
|
(f : ℂ → ℂ) :
|
||||||
{R : ℝ}
|
|
||||||
(h₁f : ∀ z ∈ Metric.closedBall z R, HolomorphicAt f z)
|
|
||||||
(h₂f : ∃ z ∈ Metric.closedBall z R, f z ≠ 0) :
|
|
||||||
ℂ → ℕ := by
|
ℂ → ℕ := by
|
||||||
|
intro z
|
||||||
|
if hf : AnalyticAt ℂ f z then
|
||||||
|
exact hf.order.toNat
|
||||||
|
else
|
||||||
|
exact 0
|
||||||
|
|
||||||
|
|
||||||
|
theorem discreteZeros
|
||||||
|
{f : ℂ → ℂ} :
|
||||||
|
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
theorem zeroDivisor_finiteOnCompact
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{s : Set ℂ}
|
||||||
|
(hs : IsCompact s) :
|
||||||
|
Set.Finite (s ∩ Function.support (zeroDivisor f)) := by
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
theorem eliminatingZeros
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
{R : ℝ}
|
||||||
|
(h₁f : ∀ z ∈ Metric.ball z₀ R, HolomorphicAt f z)
|
||||||
|
(h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) :
|
||||||
|
∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by
|
||||||
sorry
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue