Update complexHarmonic.lean

This commit is contained in:
Stefan Kebekus
2024-05-17 10:09:14 +02:00
parent bcb639a5be
commit 82fdc5ac37

View File

@@ -26,6 +26,17 @@ def Harmonic (f : → F) : Prop :=
(ContDiff 2 f) ( z, Complex.laplace f z = 0)
theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : F₁} (h₁ : Harmonic f₁) (h₂ : Harmonic f₂) :
Harmonic (f₁ + f₂) := by
constructor
· exact ContDiff.add h₁.1 h₂.1
· rw [laplace_add h₁.1 h₂.1]
simp
intro z
rw [h₁.2 z, h₂.2 z]
simp
theorem harmonic_comp_CLM_is_harmonic {f : F₁} {l : F₁ L[] G} (h : Harmonic f) :
Harmonic (l f) := by
@@ -138,96 +149,18 @@ theorem log_normSq_of_holomorphic_is_harmonic
(h₃ : z, f z Complex.slitPlane) :
Harmonic (Real.log Complex.normSq f) := by
-- Suffices to show Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ ⇑Complex.normSq ∘ f)
let F := Real.log Complex.normSq f
have : Harmonic (Complex.ofRealCLM F) Harmonic F := by
intro hyp
have t₁ : Harmonic (Complex.reCLM Complex.ofRealCLM F) := harmonic_comp_CLM_is_harmonic hyp
have t₂ : Complex.reCLM Complex.ofRealCLM F = F := rfl
rw [t₂] at t₁
exact t₁
apply this
dsimp [F]
/- We start with a number of lemmas on regularity of all the functions involved -/
-- The norm square is real C²
have normSq_is_real_C2 : ContDiff 2 Complex.normSq := by
unfold Complex.normSq
simp
conv =>
arg 3
intro x
rw [ Complex.reCLM_apply, Complex.imCLM_apply]
apply ContDiff.add
apply ContDiff.mul
apply ContinuousLinearMap.contDiff Complex.reCLM
apply ContinuousLinearMap.contDiff Complex.reCLM
apply ContDiff.mul
apply ContinuousLinearMap.contDiff Complex.imCLM
apply ContinuousLinearMap.contDiff Complex.imCLM
-- f is real C²
have f_is_real_C2 : ContDiff 2 f :=
ContDiff.restrict_scalars (Differentiable.contDiff h₁)
-- Complex.log ∘ f is real C²
have log_f_is_holomorphic : Differentiable (Complex.log f) := by
intro z
apply DifferentiableAt.comp
exact Complex.differentiableAt_log (h₃ z)
exact h₁ z
-- Real.log |f|² is real C²
have t₄ : ContDiff 2 (Real.log Complex.normSq f) := by
rw [contDiff_iff_contDiffAt]
intro z
apply ContDiffAt.comp
apply Real.contDiffAt_log.mpr
simp
exact h₂ z
apply ContDiff.comp_contDiffAt z normSq_is_real_C2
exact ContDiff.contDiffAt f_is_real_C2
have t₂ : Complex.log (starRingEnd ) f = Complex.conjCLE Complex.log f := by
funext z
unfold Function.comp
rw [Complex.log_conj]
rfl
exact Complex.slitPlane_arg_ne_pi (h₃ z)
constructor
· -- logabs f is real C²
have : (fun z Real.log f z) = (2 : )⁻¹ (Real.log Complex.normSq f) := by
funext z
simp
unfold Complex.abs
simp
rw [Real.log_sqrt]
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
exact Complex.normSq_nonneg (f z)
rw [this]
have : (2 : )⁻¹ (Real.log Complex.normSq f) = (fun z (2 : )⁻¹ ((Real.log Complex.normSq f) z)) := by
exact rfl
rw [this]
apply ContDiff.const_smul
exact t₄
· -- Laplace vanishes
have : (fun z Real.log f z) = (2 : )⁻¹ (Real.log Complex.normSq f) := by
funext z
simp
unfold Complex.abs
simp
rw [Real.log_sqrt]
rw [div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2]
exact Complex.normSq_nonneg (f z)
rw [this]
rw [laplace_smul]
simp
have : (z : ), Complex.laplace (Real.log Complex.normSq f) z = 0 Complex.laplace (Complex.ofRealCLM Real.log Complex.normSq f) z = 0 := by
intro z
rw [laplace_compContLin]
simp
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
exact t₄
conv =>
intro z
rw [this z]
-- Suffices to show Harmonic (Complex.log ∘ Complex.ofRealCLM ∘ Complex.normSq ∘ f)
have : Complex.ofRealCLM Real.log Complex.normSq f = Complex.log Complex.ofRealCLM Complex.normSq f := by
unfold Function.comp
funext z
@@ -235,12 +168,16 @@ theorem log_normSq_of_holomorphic_is_harmonic
exact Complex.normSq_nonneg (f z)
rw [this]
-- Suffices to show Harmonic (Complex.log ∘ (⇑(starRingEnd ) ∘ f * f))
have : Complex.ofRealCLM Complex.normSq f = ((starRingEnd ) f) * f := by
funext z
simp
exact Complex.normSq_eq_conj_mul_self
rw [this]
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ) ∘ f + Complex.log ∘ f)
-- THIS IS WHERE WE USE h₃
have : Complex.log ((starRingEnd ) f * f) = Complex.log (starRingEnd ) f + Complex.log f := by
unfold Function.comp
funext z
@@ -261,28 +198,23 @@ theorem log_normSq_of_holomorphic_is_harmonic
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
exact h₂ z
rw [this]
rw [laplace_add]
rw [t₂, laplace_compCLE]
apply harmonic_add_harmonic_is_harmonic
have : Complex.log (starRingEnd ) f = Complex.conjCLE Complex.log f := by
funext z
unfold Function.comp
rw [Complex.log_conj]
rfl
exact Complex.slitPlane_arg_ne_pi (h₃ z)
rw [this]
rw [ harmonic_iff_comp_CLE_is_harmonic]
repeat
apply holomorphic_is_harmonic
intro z
simp
rw [(holomorphic_is_harmonic log_f_is_holomorphic).2 z]
simp
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Complex.log ∘ ⇑(starRingEnd ) ∘ f)
rw [t₂]
apply ContDiff.comp
exact ContinuousLinearEquiv.contDiff Complex.conjCLE
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Complex.log ∘ f)
exact ContDiff.restrict_scalars (Differentiable.contDiff log_f_is_holomorphic)
-- ContDiff 2 (Real.log ∘ ⇑Complex.normSq ∘ f)
exact t₄
apply DifferentiableAt.comp
exact Complex.differentiableAt_log (h₃ z)
exact h₁ z
theorem logabs_of_holomorphic_is_harmonic