working
This commit is contained in:
parent
6eea56e788
commit
80486cc56c
|
@ -131,6 +131,77 @@ theorem laplace_add_ContDiffOn
|
||||||
rw [add_comm]
|
rw [add_comm]
|
||||||
|
|
||||||
|
|
||||||
|
theorem laplace_add_ContDiffAt
|
||||||
|
{f₁ f₂ : ℂ → F}
|
||||||
|
{x : ℂ}
|
||||||
|
(h₁ : ContDiffAt ℝ 2 f₁ x)
|
||||||
|
(h₂ : ContDiffAt ℝ 2 f₂ x) :
|
||||||
|
Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by
|
||||||
|
|
||||||
|
unfold Complex.laplace
|
||||||
|
simp
|
||||||
|
|
||||||
|
have hf₁ : ∀ z ∈ s, DifferentiableAt ℝ f₁ z := by
|
||||||
|
intro z hz
|
||||||
|
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||||
|
apply ContDiffOn.differentiableOn h₁ one_le_two
|
||||||
|
|
||||||
|
have hf₂ : ∀ z ∈ s, DifferentiableAt ℝ f₂ z := by
|
||||||
|
intro z hz
|
||||||
|
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||||
|
apply ContDiffOn.differentiableOn h₂ one_le_two
|
||||||
|
|
||||||
|
have : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||||||
|
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||||
|
use s
|
||||||
|
constructor
|
||||||
|
· exact IsOpen.mem_nhds hs hx
|
||||||
|
· intro z hz
|
||||||
|
apply partialDeriv_add₂_differentiableAt
|
||||||
|
exact hf₁ z hz
|
||||||
|
exact hf₂ z hz
|
||||||
|
rw [partialDeriv_eventuallyEq ℝ this]
|
||||||
|
have t₁ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₁) x := by
|
||||||
|
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||||
|
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||||||
|
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
|
have t₂ : DifferentiableAt ℝ (partialDeriv ℝ 1 f₂) x := by
|
||||||
|
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||||
|
let A₀ := partialDeriv_contDiffAt ℝ B₀ 1
|
||||||
|
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
|
rw [partialDeriv_add₂_differentiableAt ℝ t₁ t₂]
|
||||||
|
|
||||||
|
have : partialDeriv ℝ Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ Complex.I f₁) + (partialDeriv ℝ Complex.I f₂) := by
|
||||||
|
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||||
|
use s
|
||||||
|
constructor
|
||||||
|
· exact IsOpen.mem_nhds hs hx
|
||||||
|
· intro z hz
|
||||||
|
apply partialDeriv_add₂_differentiableAt
|
||||||
|
exact hf₁ z hz
|
||||||
|
exact hf₂ z hz
|
||||||
|
rw [partialDeriv_eventuallyEq ℝ this]
|
||||||
|
have t₃ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₁) x := by
|
||||||
|
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||||
|
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||||||
|
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
|
have t₄ : DifferentiableAt ℝ (partialDeriv ℝ Complex.I f₂) x := by
|
||||||
|
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
|
||||||
|
let A₀ := partialDeriv_contDiffAt ℝ B₀ Complex.I
|
||||||
|
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
|
||||||
|
rw [partialDeriv_add₂_differentiableAt ℝ t₃ t₄]
|
||||||
|
|
||||||
|
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||||
|
-- I do not understand why. So, I need to do things by hand.
|
||||||
|
rw [add_assoc]
|
||||||
|
rw [add_assoc]
|
||||||
|
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||||||
|
rw [add_comm]
|
||||||
|
rw [add_assoc]
|
||||||
|
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||||||
|
rw [add_comm]
|
||||||
|
|
||||||
|
|
||||||
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by
|
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by
|
||||||
intro v
|
intro v
|
||||||
unfold Complex.laplace
|
unfold Complex.laplace
|
||||||
|
|
|
@ -85,6 +85,21 @@ theorem partialDeriv_add₂_differentiableAt
|
||||||
rfl
|
rfl
|
||||||
|
|
||||||
|
|
||||||
|
theorem partialDeriv_add₂_differentiableAt'
|
||||||
|
{f₁ f₂ : E → F}
|
||||||
|
{v : E}
|
||||||
|
{x : E}
|
||||||
|
(h₁ : DifferentiableAt 𝕜 f₁ x)
|
||||||
|
(h₂ : DifferentiableAt 𝕜 f₂ x) :
|
||||||
|
partialDeriv 𝕜 v (f₁ + f₂) =ᶠ[nhds x] (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
|
||||||
|
|
||||||
|
unfold partialDeriv
|
||||||
|
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
|
||||||
|
rw [this]
|
||||||
|
rw [fderiv_add h₁ h₂]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
|
||||||
theorem partialDeriv_compContLin {f : E → F} {l : F →L[𝕜] G} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
theorem partialDeriv_compContLin {f : E → F} {l : F →L[𝕜] G} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
|
||||||
unfold partialDeriv
|
unfold partialDeriv
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue