Working…
This commit is contained in:
parent
50591a54c2
commit
7a281ff514
|
@ -44,8 +44,10 @@ theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z)
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
|
||||||
theorem CauchyRiemann₄ {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] {f : ℂ → F} : (Differentiable ℂ f)
|
theorem CauchyRiemann₄
|
||||||
→ partialDeriv ℝ Complex.I f = Complex.I • partialDeriv ℝ 1 f := by
|
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||||
|
{f : ℂ → F} :
|
||||||
|
(Differentiable ℂ f) → partialDeriv ℝ Complex.I f = Complex.I • partialDeriv ℝ 1 f := by
|
||||||
intro h
|
intro h
|
||||||
unfold partialDeriv
|
unfold partialDeriv
|
||||||
|
|
||||||
|
|
|
@ -4,9 +4,7 @@ import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
||||||
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
||||||
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
||||||
|
|
||||||
|
|
||||||
import Nevanlinna.cauchyRiemann
|
import Nevanlinna.cauchyRiemann
|
||||||
import Nevanlinna.partialDeriv
|
|
||||||
|
|
||||||
|
|
||||||
theorem MeasureTheory.integral2_divergence₃
|
theorem MeasureTheory.integral2_divergence₃
|
||||||
|
@ -108,7 +106,6 @@ theorem integral_divergence₅
|
||||||
exact h₁f
|
exact h₁f
|
||||||
|
|
||||||
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
|
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
|
||||||
|
|
||||||
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv ℝ _ F z := by rfl
|
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv ℝ _ F z := by rfl
|
||||||
conv at A in (fderiv ℝ F _) _ => rw [this]
|
conv at A in (fderiv ℝ F _) _ => rw [this]
|
||||||
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv ℝ _ (-Complex.I • F) z := by rfl
|
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv ℝ _ (-Complex.I • F) z := by rfl
|
||||||
|
|
Loading…
Reference in New Issue