working
This commit is contained in:
parent
567b08aa5b
commit
77dea4115e
|
@ -36,10 +36,13 @@ lemma l₂ {x : ℝ} : ‖(circleMap 0 1 x) - a‖ = ‖1 - (circleMap 0 1 (-x))
|
||||||
dsimp [circleMap]
|
dsimp [circleMap]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
-- Integral of log ‖circleMap 0 1 x - a‖, for ‖a‖ < 1.
|
||||||
|
|
||||||
lemma int₀
|
lemma int₀
|
||||||
{a : ℂ}
|
{a : ℂ}
|
||||||
(ha : a ∈ Metric.ball 0 1) :
|
(ha : a ∈ Metric.ball 0 1) :
|
||||||
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
∫ (x : ℝ) in (0)..2 * π, log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||||
|
|
||||||
by_cases h₁a : a = 0
|
by_cases h₁a : a = 0
|
||||||
· -- case: a = 0
|
· -- case: a = 0
|
||||||
|
@ -108,6 +111,8 @@ lemma int₀
|
||||||
exact A
|
exact A
|
||||||
|
|
||||||
|
|
||||||
|
-- Integral of log ‖circleMap 0 1 x - 1‖
|
||||||
|
|
||||||
lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
||||||
|
|
||||||
have t₁ {x : ℝ} : x ∈ Set.Ioo 0 π → log (4 * sin x ^ 2) = log 4 + 2 * log (sin x) := by
|
have t₁ {x : ℝ} : x ∈ Set.Ioo 0 π → log (4 * sin x ^ 2) = log 4 + 2 * log (sin x) := by
|
||||||
|
@ -141,34 +146,43 @@ lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
||||||
apply IntervalIntegrable.const_mul
|
apply IntervalIntegrable.const_mul
|
||||||
exact intervalIntegrable_log_sin
|
exact intervalIntegrable_log_sin
|
||||||
|
|
||||||
|
lemma logAffineHelper {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by
|
||||||
|
dsimp [Complex.abs]
|
||||||
|
rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))]
|
||||||
|
congr
|
||||||
|
calc Complex.normSq (circleMap 0 1 x - 1)
|
||||||
|
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
|
||||||
|
dsimp [circleMap]
|
||||||
|
rw [Complex.normSq_apply]
|
||||||
|
simp
|
||||||
|
_ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by
|
||||||
|
ring
|
||||||
|
_ = 2 - 2 * cos x := by
|
||||||
|
rw [sin_sq_add_cos_sq]
|
||||||
|
norm_num
|
||||||
|
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
||||||
|
rw [← mul_div_assoc]
|
||||||
|
congr; norm_num
|
||||||
|
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
|
||||||
|
rw [cos_two_mul]
|
||||||
|
ring
|
||||||
|
_ = 4 * sin (x / 2) ^ 2 := by
|
||||||
|
nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)]
|
||||||
|
ring
|
||||||
|
|
||||||
|
lemma int'₁ : -- Integrability of log ‖circleMap 0 1 x - 1‖
|
||||||
|
IntervalIntegrable (fun x ↦ log ‖circleMap 0 1 x - 1‖) volume 0 (2 * π) := by
|
||||||
|
simp_rw [logAffineHelper]
|
||||||
|
rw [← IntervalIntegrable.comp_mul_left_iff (c := 2) (Ne.symm (NeZero.ne' 2))]
|
||||||
|
simp
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
lemma int₁ :
|
lemma int₁ :
|
||||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||||
|
|
||||||
have {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by
|
simp_rw [logAffineHelper]
|
||||||
dsimp [Complex.abs]
|
|
||||||
rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))]
|
|
||||||
congr
|
|
||||||
calc Complex.normSq (circleMap 0 1 x - 1)
|
|
||||||
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
|
|
||||||
dsimp [circleMap]
|
|
||||||
rw [Complex.normSq_apply]
|
|
||||||
simp
|
|
||||||
_ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by
|
|
||||||
ring
|
|
||||||
_ = 2 - 2 * cos x := by
|
|
||||||
rw [sin_sq_add_cos_sq]
|
|
||||||
norm_num
|
|
||||||
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
|
||||||
rw [← mul_div_assoc]
|
|
||||||
congr; norm_num
|
|
||||||
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
|
|
||||||
rw [cos_two_mul]
|
|
||||||
ring
|
|
||||||
_ = 4 * sin (x / 2) ^ 2 := by
|
|
||||||
nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)]
|
|
||||||
ring
|
|
||||||
simp_rw [this]
|
|
||||||
simp
|
simp
|
||||||
|
|
||||||
have : ∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) := by
|
have : ∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) := by
|
||||||
|
|
|
@ -254,6 +254,19 @@ theorem intervalIntegral.integral_congr_volume
|
||||||
_ = 0 := volume_singleton
|
_ = 0 := volume_singleton
|
||||||
|
|
||||||
|
|
||||||
|
theorem IntervalIntegrable.integral_congr_Ioo
|
||||||
|
{E : Type u_3} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
||||||
|
{f g : ℝ → E}
|
||||||
|
{a b : ℝ}
|
||||||
|
(hab : a ≤ b)
|
||||||
|
(hfg : Set.EqOn f g (Set.Ioo a b)) :
|
||||||
|
IntervalIntegrable f volume a b ↔ IntervalIntegrable g volume a b := by
|
||||||
|
|
||||||
|
rw [intervalIntegrable_iff_integrableOn_Ioo_of_le hab]
|
||||||
|
rw [MeasureTheory.integrableOn_congr_fun hfg measurableSet_Ioo]
|
||||||
|
rw [← intervalIntegrable_iff_integrableOn_Ioo_of_le hab]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
lemma integral_log_sin₀ : ∫ (x : ℝ) in (0)..π, log (sin x) = 2 * ∫ (x : ℝ) in (0)..(π / 2), log (sin x) := by
|
lemma integral_log_sin₀ : ∫ (x : ℝ) in (0)..π, log (sin x) = 2 * ∫ (x : ℝ) in (0)..(π / 2), log (sin x) := by
|
||||||
rw [← intervalIntegral.integral_add_adjacent_intervals (a := 0) (b := π / 2) (c := π)]
|
rw [← intervalIntegral.integral_add_adjacent_intervals (a := 0) (b := π / 2) (c := π)]
|
||||||
|
|
Loading…
Reference in New Issue