This commit is contained in:
Stefan Kebekus 2024-06-05 09:06:25 +02:00
parent 7741447426
commit 74d9636aa9
2 changed files with 24 additions and 64 deletions

View File

@ -141,55 +141,11 @@ theorem laplace_add_ContDiffAt
unfold Complex.laplace unfold Complex.laplace
simp simp
have hf₁ : ∀ z ∈ s, DifferentiableAt f₁ z := by have h₁₁ : ContDiffAt 1 f₁ x := h₁.of_le one_le_two
intro z hz have h₂₁ : ContDiffAt 1 f₂ x := h₂.of_le one_le_two
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz) repeat
apply ContDiffOn.differentiableOn h₁ one_le_two rw [partialDeriv_eventuallyEq (partialDeriv_add₂_contDiffAt h₁₁ h₂₁)]
rw [partialDeriv_add₂_differentiableAt]
have hf₂ : ∀ z ∈ s, DifferentiableAt f₂ z := by
intro z hz
convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
apply ContDiffOn.differentiableOn h₂ one_le_two
have : partialDeriv 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv 1 f₁) + (partialDeriv 1 f₂) := by
apply Filter.eventuallyEq_iff_exists_mem.2
use s
constructor
· exact IsOpen.mem_nhds hs hx
· intro z hz
apply partialDeriv_add₂_differentiableAt
exact hf₁ z hz
exact hf₂ z hz
rw [partialDeriv_eventuallyEq this]
have t₁ : DifferentiableAt (partialDeriv 1 f₁) x := by
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
let A₀ := partialDeriv_contDiffAt B₀ 1
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
have t₂ : DifferentiableAt (partialDeriv 1 f₂) x := by
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
let A₀ := partialDeriv_contDiffAt B₀ 1
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
rw [partialDeriv_add₂_differentiableAt t₁ t₂]
have : partialDeriv Complex.I (f₁ + f₂) =ᶠ[nhds x] (partialDeriv Complex.I f₁) + (partialDeriv Complex.I f₂) := by
apply Filter.eventuallyEq_iff_exists_mem.2
use s
constructor
· exact IsOpen.mem_nhds hs hx
· intro z hz
apply partialDeriv_add₂_differentiableAt
exact hf₁ z hz
exact hf₂ z hz
rw [partialDeriv_eventuallyEq this]
have t₃ : DifferentiableAt (partialDeriv Complex.I f₁) x := by
let B₀ := (h₁ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
let A₀ := partialDeriv_contDiffAt B₀ Complex.I
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
have t₄ : DifferentiableAt (partialDeriv Complex.I f₂) x := by
let B₀ := (h₂ x hx).contDiffAt (IsOpen.mem_nhds hs hx)
let A₀ := partialDeriv_contDiffAt B₀ Complex.I
exact A₀.differentiableAt (Submonoid.oneLE.proof_2 ℕ∞)
rw [partialDeriv_add₂_differentiableAt t₃ t₄]
-- I am super confused at this point because the tactic 'ring' does not work. -- I am super confused at this point because the tactic 'ring' does not work.
-- I do not understand why. So, I need to do things by hand. -- I do not understand why. So, I need to do things by hand.
@ -201,6 +157,10 @@ theorem laplace_add_ContDiffAt
rw [add_right_inj (partialDeriv Complex.I (partialDeriv Complex.I f₁) x)] rw [add_right_inj (partialDeriv Complex.I (partialDeriv Complex.I f₁) x)]
rw [add_comm] rw [add_comm]
repeat
apply fun v ↦ (partialDeriv_contDiffAt h₁ v).differentiableAt le_rfl
apply fun v ↦ (partialDeriv_contDiffAt h₂ v).differentiableAt le_rfl
theorem laplace_smul {f : → F} : ∀ v : , Δ (v • f) = v • (Δ f) := by theorem laplace_smul {f : → F} : ∀ v : , Δ (v • f) = v • (Δ f) := by
intro v intro v

View File

@ -66,9 +66,9 @@ theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} : partialDeriv
simp simp
theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by theorem partialDeriv_add₂ {f₁ f₂ : E → F} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : ∀ v : E, partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
unfold partialDeriv unfold partialDeriv
intro v
have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl have : f₁ + f₂ = fun y ↦ f₁ y + f₂ y := by rfl
rw [this] rw [this]
conv => conv =>