Working…
This commit is contained in:
parent
15fa18c52f
commit
74ba95926e
|
@ -118,10 +118,6 @@ theorem AnalyticAt.supp_order_toNat
|
||||||
intro h₁f
|
intro h₁f
|
||||||
simp [hf.order_eq_zero_iff.2 h₁f]
|
simp [hf.order_eq_zero_iff.2 h₁f]
|
||||||
|
|
||||||
/-
|
|
||||||
theorem ContinuousLinearEquiv.analyticAt
|
|
||||||
(ℓ : ℂ ≃L[ℂ] ℂ) (z₀ : ℂ) : AnalyticAt ℂ (⇑ℓ) z₀ := ℓ.toContinuousLinearMap.analyticAt z₀
|
|
||||||
-/
|
|
||||||
|
|
||||||
theorem eventually_nhds_comp_composition
|
theorem eventually_nhds_comp_composition
|
||||||
{f₁ f₂ ℓ : ℂ → ℂ}
|
{f₁ f₂ ℓ : ℂ → ℂ}
|
||||||
|
@ -260,3 +256,13 @@ theorem AnalyticAt.localIdentity
|
||||||
let _ := Filter.Eventually.exists A
|
let _ := Filter.Eventually.exists A
|
||||||
tauto
|
tauto
|
||||||
exact Filter.eventuallyEq_iff_sub.mpr this
|
exact Filter.eventuallyEq_iff_sub.mpr this
|
||||||
|
|
||||||
|
|
||||||
|
theorem AnalyticAt.mul₁
|
||||||
|
{f g : ℂ → ℂ}
|
||||||
|
{z : ℂ}
|
||||||
|
(hf : AnalyticAt ℂ f z)
|
||||||
|
(hg : AnalyticAt ℂ g z) :
|
||||||
|
AnalyticAt ℂ (f * g) z := by
|
||||||
|
rw [(by rfl : f * g = (fun x ↦ f x * g x))]
|
||||||
|
exact mul hf hg
|
||||||
|
|
|
@ -20,7 +20,7 @@ theorem MeromorphicOn.decompose
|
||||||
(h₂f : ∃ z₀ ∈ U, f z₀ ≠ 0) :
|
(h₂f : ∃ z₀ ∈ U, f z₀ ≠ 0) :
|
||||||
∃ g : ℂ → ℂ, (AnalyticOnNhd ℂ g U)
|
∃ g : ℂ → ℂ, (AnalyticOnNhd ℂ g U)
|
||||||
∧ (∀ z ∈ U, g z ≠ 0)
|
∧ (∀ z ∈ U, g z ≠ 0)
|
||||||
∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p) * g z ) U) := by
|
∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn ((∏ᶠ p, fun z ↦ (z - p) ^ (h₁f.divisor p)) * g) U) := by
|
||||||
|
|
||||||
let g₁ : ℂ → ℂ := f * (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p))
|
let g₁ : ℂ → ℂ := f * (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p))
|
||||||
have h₁g₁ : MeromorphicOn g₁ U := by
|
have h₁g₁ : MeromorphicOn g₁ U := by
|
||||||
|
@ -65,5 +65,18 @@ theorem MeromorphicOn.decompose
|
||||||
sorry
|
sorry
|
||||||
apply Filter.EventuallyEq.eq_of_nhds
|
apply Filter.EventuallyEq.eq_of_nhds
|
||||||
apply StronglyMeromorphicAt.localIdentity
|
apply StronglyMeromorphicAt.localIdentity
|
||||||
|
· exact StronglyMeromorphicOn_of_makeStronglyMeromorphic h₁f z hz
|
||||||
|
· right
|
||||||
|
use h₁f.divisor z
|
||||||
|
use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g
|
||||||
|
constructor
|
||||||
|
· apply AnalyticAt.mul₁
|
||||||
|
·
|
||||||
|
sorry
|
||||||
|
· apply (h₃g z hz).analytic
|
||||||
|
rw [h₂g ⟨z, hz⟩]
|
||||||
|
· constructor
|
||||||
|
· sorry
|
||||||
|
· sorry
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
|
@ -81,9 +81,9 @@ theorem makeStronglyMeromorphicOn_changeDiscrete
|
||||||
|
|
||||||
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphic
|
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphic
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
|
||||||
(hf : MeromorphicOn f U) :
|
(hf : MeromorphicOn f U) :
|
||||||
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
|
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue