Working…

This commit is contained in:
Stefan Kebekus
2024-12-05 12:00:49 +01:00
parent 5e244a732a
commit 734ea1a8f4
3 changed files with 50 additions and 21 deletions

View File

@@ -394,7 +394,13 @@ lemma int₄
have h₁a : a / R Metric.closedBall 0 1 := by
simp
simp at ha
sorry
rw [div_le_comm₀]
simp
have : R = |R| := by
exact Eq.symm (abs_of_pos hR)
rwa [this] at ha
rwa [abs_of_pos hR]
simp
have t₀ {x : } : circleMap 0 R x = R * circleMap 0 1 x := by
unfold circleMap

View File

@@ -304,16 +304,17 @@ theorem jensen
simp at hs
simp [hs.1]
rw [finsum_eq_sum_of_support_subset _ h₁G'] at decompose_int_G
have : s h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * (x_1 : ) in (0)..(2 * π), log circleMap 0 R x_1 - s = 0 := by
apply Finset.sum_eq_zero
intro x hx
rw [int₃ _]
simp
simp at hx
let ZZ := h₁f.meromorphicOn.divisor.supportInU
simp at ZZ
let UU := ZZ x hx
simpa
have : s h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * (x_1 : ) in (0)..(2 * π), log circleMap 0 R x_1 - s = s h₃f.toFinset, (h₁f.meromorphicOn.divisor s) * (2 * π) * log R := by
apply Finset.sum_congr rfl
intro s hs
have : s Metric.closedBall 0 R := by
let A := h₁f.meromorphicOn.divisor.supportInU
have : s Function.support h₁f.meromorphicOn.divisor := by
simp at hs
exact hs
exact A this
rw [int₄ hR this]
linarith
rw [this] at decompose_int_G
@@ -324,20 +325,42 @@ theorem jensen
let X := h₄F
nth_rw 1 [h₄F]
simp
have {l : } : π⁻¹ * 2⁻¹ * (2 * π * l) = l := by
calc π⁻¹ * 2⁻¹ * (2 * π * l)
_ = π⁻¹ * (2⁻¹ * 2) * π * l := by ring
_ = π⁻¹ * π * l := by ring
_ = (π⁻¹ * π) * l := by ring
_ = 1 * l := by
have : π⁻¹ * 2⁻¹ * (2 * π) = 1 := by
calc π⁻¹ * 2⁻¹ * (2 * π)
_ = π⁻¹ * (2⁻¹ * 2) * π := by ring
_ = π⁻¹ * π := by ring
_ = (π⁻¹ * π) := by ring
_ = 1 := by
rw [inv_mul_cancel₀]
exact pi_ne_zero
_ = l := by simp
rw [this]
--rw [this]
rw [log_mul]
rw [log_prod]
simp
rw [add_comm]
rw [mul_add]
rw [ mul_assoc (π⁻¹ * 2⁻¹), this]
simp
rw [add_comm]
nth_rw 2 [add_comm]
rw [add_assoc]
congr
rw [Finset.mul_sum]
rw [ sub_eq_add_neg]
rw [ Finset.sum_sub_distrib]
rw [Finset.sum_congr rfl]
intro s hs
rw [log_mul, log_inv]
rw [ mul_assoc (π⁻¹ * 2⁻¹)]
rw [mul_comm _ (2 * π)]
rw [ mul_assoc (π⁻¹ * 2⁻¹)]
rw [this]
simp
rw [mul_add]
ring
--
--
intro x hx
simp at hx