diff --git a/Nevanlinna/complexHarmonic.lean b/Nevanlinna/complexHarmonic.lean index 6537af8..fb0aefa 100644 --- a/Nevanlinna/complexHarmonic.lean +++ b/Nevanlinna/complexHarmonic.lean @@ -26,6 +26,23 @@ def Harmonic (f : ℂ → F) : Prop := (ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0) +def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop := + (ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Complex.laplace f z = 0) + + +theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) : + HarmonicOn f s := by + constructor + · apply contDiffOn_of_locally_contDiffOn + intro x xHyp + obtain ⟨u, uHyp⟩ := h x xHyp + use u + exact ⟨ uHyp.1, ⟨uHyp.2.1, uHyp.2.2.1⟩⟩ + · intro x xHyp + obtain ⟨u, uHyp⟩ := h x xHyp + exact (uHyp.2.2.2) x ⟨xHyp, uHyp.2.1⟩ + + theorem harmonic_add_harmonic_is_harmonic {f₁ f₂ : ℂ → F} (h₁ : Harmonic f₁) (h₂ : Harmonic f₂) : Harmonic (f₁ + f₂) := by constructor @@ -72,6 +89,21 @@ theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G} exact ContDiff.restrict_scalars ℝ h.1 +theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l : F₁ →L[ℝ] G} (h : HarmonicOn f s) : + HarmonicOn (l ∘ f) s := by + + constructor + · -- Continuous differentiability + apply ContDiffOn.continuousLinearMap_comp + exact h.1 + · rw [laplace_compContLin] + simp + intro z zHyp + rw [h.2 z] + simp + assumption + + theorem harmonic_iff_comp_CLE_is_harmonic {f : ℂ → F₁} {l : F₁ ≃L[ℝ] G₁} : Harmonic f ↔ Harmonic (l ∘ f) := by @@ -161,6 +193,68 @@ theorem antiholomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) exact holomorphic_is_harmonic h +theorem log_normSq_of_holomorphicOn_is_harmonicOn + {f : ℂ → ℂ} + {s : Set ℂ} + (h₁ : DifferentiableOn ℂ f s) + (h₂ : ∀ z ∈ s, f z ≠ 0) + (h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) : + HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by + + suffices hyp : Harmonic (⇑Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f) from + (harmonic_comp_CLM_is_harmonic hyp : Harmonic (Complex.reCLM ∘ Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f)) + + suffices hyp : Harmonic (Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f)) from by + have : Complex.ofRealCLM ∘ Real.log ∘ Complex.normSq ∘ f = Complex.log ∘ (((starRingEnd ℂ) ∘ f) * f) := by + funext z + simp + rw [Complex.ofReal_log (Complex.normSq_nonneg (f z))] + rw [Complex.normSq_eq_conj_mul_self] + rw [this] + exact hyp + + + -- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f) + -- THIS IS WHERE WE USE h₃ + have : Complex.log ∘ (⇑(starRingEnd ℂ) ∘ f * f) = Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f := by + unfold Function.comp + funext z + simp + rw [Complex.log_mul_eq_add_log_iff] + + have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by + rw [Complex.arg_conj] + have : ¬ Complex.arg (f z) = Real.pi := by + exact Complex.slitPlane_arg_ne_pi (h₃ z) + simp + tauto + rw [this] + simp + constructor + · exact Real.pi_pos + · exact Real.pi_nonneg + exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z) + exact h₂ z + rw [this] + + apply harmonic_add_harmonic_is_harmonic + have : Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by + funext z + unfold Function.comp + rw [Complex.log_conj] + rfl + exact Complex.slitPlane_arg_ne_pi (h₃ z) + rw [this] + rw [← harmonic_iff_comp_CLE_is_harmonic] + + repeat + apply holomorphic_is_harmonic + intro z + apply DifferentiableAt.comp + exact Complex.differentiableAt_log (h₃ z) + exact h₁ z + + theorem log_normSq_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h₁ : Differentiable ℂ f)