Update test.lean

This commit is contained in:
Stefan Kebekus 2024-04-23 21:20:50 +02:00
parent f33953de0a
commit 72ce984d03
1 changed files with 26 additions and 3 deletions

View File

@ -46,10 +46,33 @@ theorem SimpleCauchyFormula :
theorem JensenFormula₂ : theorem JensenFormula₂ :
{R : } -- Radius of the ball {R : } -- Radius of the ball
{w : } -- Point in the interior of the ball
{f : }, -- Holomorphic function {f : }, -- Holomorphic function
Differentiable f Differentiable f
→ ∀ z ∈ Metric.ball 0 R, f z ≠ 0 → (∀ z ∈ Metric.ball 0 R, f z ≠ 0)
→ (∮ (z : ) in C(0, R), Complex.log ‖f z‖ ) = 2 * π * R * log ‖f 0‖ := by → (∫ (θ : ) in Set.Icc 0 (2 * π), Complex.log ‖f (circleMap 0 R θ)‖ ) = 2 * π * log ‖f 0‖ := by
intro r f fHyp₁ fHyp₂
have : (fun θ ↦ Complex.log ↑‖f (circleMap 0 r θ)‖) = (fun θ ↦ ((deriv (circleMap 0 r) θ)) • ((deriv (circleMap 0 r) θ)⁻¹ • Complex.log ↑‖f (circleMap 0 r θ)‖)) := by
funext θ
rw [← smul_assoc]
rw [smul_eq_mul, smul_eq_mul]
rw [mul_inv_cancel, one_mul]
simp
sorry
rw [this]
simp
let XX := circleIntegral_def_Icc (fun z ↦ -(Complex.I * z⁻¹ * (Complex.log ↑‖f z‖))) 0 r
simp at XX
rw [← XX]
sorry sorry