Update test.lean
This commit is contained in:
parent
f33953de0a
commit
72ce984d03
|
@ -46,10 +46,33 @@ theorem SimpleCauchyFormula :
|
||||||
theorem JensenFormula₂ :
|
theorem JensenFormula₂ :
|
||||||
∀
|
∀
|
||||||
{R : ℝ} -- Radius of the ball
|
{R : ℝ} -- Radius of the ball
|
||||||
{w : ℂ} -- Point in the interior of the ball
|
|
||||||
{f : ℂ → ℂ}, -- Holomorphic function
|
{f : ℂ → ℂ}, -- Holomorphic function
|
||||||
Differentiable ℂ f
|
Differentiable ℂ f
|
||||||
→ ∀ z ∈ Metric.ball 0 R, f z ≠ 0
|
→ (∀ z ∈ Metric.ball 0 R, f z ≠ 0)
|
||||||
→ (∮ (z : ℂ) in C(0, R), Complex.log ‖f z‖ ) = 2 * π * R * log ‖f 0‖ := by
|
→ (∫ (θ : ℝ) in Set.Icc 0 (2 * π), Complex.log ‖f (circleMap 0 R θ)‖ ) = 2 * π * log ‖f 0‖ := by
|
||||||
|
|
||||||
|
intro r f fHyp₁ fHyp₂
|
||||||
|
|
||||||
|
have : (fun θ ↦ Complex.log ↑‖f (circleMap 0 r θ)‖) = (fun θ ↦ ((deriv (circleMap 0 r) θ)) • ((deriv (circleMap 0 r) θ)⁻¹ • Complex.log ↑‖f (circleMap 0 r θ)‖)) := by
|
||||||
|
funext θ
|
||||||
|
rw [← smul_assoc]
|
||||||
|
|
||||||
|
rw [smul_eq_mul, smul_eq_mul]
|
||||||
|
rw [mul_inv_cancel, one_mul]
|
||||||
|
|
||||||
|
simp
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
simp
|
||||||
|
|
||||||
|
let XX := circleIntegral_def_Icc (fun z ↦ -(Complex.I * z⁻¹ * (Complex.log ↑‖f z‖))) 0 r
|
||||||
|
simp at XX
|
||||||
|
|
||||||
|
rw [← XX]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue