Jensen's formula is done!
This commit is contained in:
parent
5a984253c6
commit
712be956d0
|
@ -350,6 +350,7 @@ theorem jensen
|
||||||
simpa
|
simpa
|
||||||
|
|
||||||
let A := jensen_case_R_eq_one F h₁F h₂F
|
let A := jensen_case_R_eq_one F h₁F h₂F
|
||||||
|
|
||||||
dsimp [F] at A
|
dsimp [F] at A
|
||||||
have {x : ℂ} : ℓ x = R * x := by rfl
|
have {x : ℂ} : ℓ x = R * x := by rfl
|
||||||
repeat
|
repeat
|
||||||
|
@ -357,7 +358,6 @@ theorem jensen
|
||||||
simp at A
|
simp at A
|
||||||
simp
|
simp
|
||||||
rw [A]
|
rw [A]
|
||||||
|
|
||||||
simp_rw [← const_mul_circleMap_zero]
|
simp_rw [← const_mul_circleMap_zero]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
@ -394,6 +394,7 @@ theorem jensen
|
||||||
|
|
||||||
apply finsum_eq_of_bijective e
|
apply finsum_eq_of_bijective e
|
||||||
|
|
||||||
|
|
||||||
apply Function.bijective_iff_has_inverse.mpr
|
apply Function.bijective_iff_has_inverse.mpr
|
||||||
use e'
|
use e'
|
||||||
constructor
|
constructor
|
||||||
|
@ -418,6 +419,31 @@ theorem jensen
|
||||||
|
|
||||||
intro x
|
intro x
|
||||||
simp
|
simp
|
||||||
|
by_cases hx : x = (0 : ℂ)
|
||||||
|
rw [hx]
|
||||||
|
simp
|
||||||
|
|
||||||
|
rw [log_mul, log_mul, log_inv, log_inv]
|
||||||
|
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
|
||||||
|
rw [← this]
|
||||||
|
simp
|
||||||
|
left
|
||||||
|
congr 1
|
||||||
|
|
||||||
sorry
|
dsimp [AnalyticOn.order]
|
||||||
|
rw [← AnalyticAt.order_comp_CLE ℓ]
|
||||||
|
|
||||||
|
--
|
||||||
|
simpa
|
||||||
|
--
|
||||||
|
have : R = |R| := by exact Eq.symm (abs_of_pos hR)
|
||||||
|
rw [← this]
|
||||||
|
apply inv_ne_zero
|
||||||
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
--
|
||||||
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
--
|
||||||
|
simp
|
||||||
|
constructor
|
||||||
|
· assumption
|
||||||
|
· exact Ne.symm (ne_of_lt hR)
|
||||||
|
|
Loading…
Reference in New Issue