Working…
This commit is contained in:
parent
4d3332b15d
commit
6eea56e788
|
@ -249,6 +249,18 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
|||
(h₂ : ∀ z ∈ s, f z ≠ 0) :
|
||||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||||
|
||||
have slitPlaneLemma {z : ℂ} (hz : z ≠ 0) : z ∈ Complex.slitPlane ∨ -z ∈ Complex.slitPlane := by
|
||||
rw [Complex.mem_slitPlane_iff]
|
||||
rw [Complex.mem_slitPlane_iff]
|
||||
simp at hz
|
||||
rw [Complex.ext_iff] at hz
|
||||
push_neg at hz
|
||||
simp at hz
|
||||
simp
|
||||
by_contra contra
|
||||
push_neg at contra
|
||||
exact hz (le_antisymm contra.1.1 contra.2.1) contra.1.2
|
||||
|
||||
let s₁ : Set ℂ := { z | f z ∈ Complex.slitPlane} ∩ s
|
||||
|
||||
have hs₁ : IsOpen s₁ := by
|
||||
|
@ -318,10 +330,8 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
|||
· exact hs₂
|
||||
· constructor
|
||||
· constructor
|
||||
· simp
|
||||
rw [Complex.mem_slitPlane_iff]
|
||||
rw [Complex.mem_slitPlane_iff] at hfz
|
||||
simp at hfz
|
||||
· apply Or.resolve_left (slitPlaneLemma (h₂ z hz)) hfz
|
||||
· exact hz
|
||||
· have : s₂ = s ∩ s₂ := by
|
||||
apply Set.right_eq_inter.mpr
|
||||
exact Set.inter_subset_right {z | -f z ∈ Complex.slitPlane} s
|
||||
|
|
|
@ -23,11 +23,12 @@ variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [Comple
|
|||
|
||||
|
||||
def Harmonic (f : ℂ → F) : Prop :=
|
||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||
(ContDiff ℝ 2 f) ∧ (∀ z, Δ f z = 0)
|
||||
|
||||
|
||||
def HarmonicOn (f : ℂ → F) (s : Set ℂ) : Prop :=
|
||||
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Complex.laplace f z = 0)
|
||||
(ContDiffOn ℝ 2 f s) ∧ (∀ z ∈ s, Δ f z = 0)
|
||||
|
||||
|
||||
|
||||
theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) :
|
||||
|
@ -135,7 +136,7 @@ theorem harmonic_comp_CLM_is_harmonic {f : ℂ → F₁} {l : F₁ →L[ℝ] G}
|
|||
apply ContDiff.comp
|
||||
exact ContinuousLinearMap.contDiff l
|
||||
exact h.1
|
||||
· rw [laplace_compContLin]
|
||||
· rw [laplace_compCLM]
|
||||
simp
|
||||
intro z
|
||||
rw [h.2 z]
|
||||
|
@ -152,7 +153,7 @@ theorem harmonicOn_comp_CLM_is_harmonicOn {f : ℂ → F₁} {s : Set ℂ} {l :
|
|||
exact h.1
|
||||
· -- Vanishing of Laplace
|
||||
intro z zHyp
|
||||
rw [laplace_compContLinAt]
|
||||
rw [laplace_compCLMAt]
|
||||
simp
|
||||
rw [h.2 z]
|
||||
simp
|
||||
|
|
|
@ -20,18 +20,25 @@ variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
|||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||
|
||||
|
||||
noncomputable def Complex.laplace : (ℂ → F) → (ℂ → F) :=
|
||||
fun f ↦ partialDeriv ℝ 1 (partialDeriv ℝ 1 f) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f)
|
||||
noncomputable def Complex.laplace (f : ℂ → F) : ℂ → F :=
|
||||
partialDeriv ℝ 1 (partialDeriv ℝ 1 f) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f)
|
||||
|
||||
notation "Δ" => Complex.laplace
|
||||
|
||||
|
||||
theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Complex.laplace f₁ x = Complex.laplace f₂ x := by
|
||||
theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ x = Δ f₂ x := by
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1]
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I]
|
||||
|
||||
|
||||
theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂ : ContDiff ℝ 2 f₂): Complex.laplace (f₁ + f₂) = (Complex.laplace f₁) + (Complex.laplace f₂) := by
|
||||
theorem laplace_add
|
||||
{f₁ f₂ : ℂ → F}
|
||||
(h₁ : ContDiff ℝ 2 f₁)
|
||||
(h₂ : ContDiff ℝ 2 f₂) :
|
||||
Δ (f₁ + f₂) = (Δ f₁) + (Δ f₂) := by
|
||||
|
||||
unfold Complex.laplace
|
||||
rw [partialDeriv_add₂]
|
||||
rw [partialDeriv_add₂]
|
||||
|
@ -59,7 +66,7 @@ theorem laplace_add_ContDiffOn
|
|||
(hs : IsOpen s)
|
||||
(h₁ : ContDiffOn ℝ 2 f₁ s)
|
||||
(h₂ : ContDiffOn ℝ 2 f₂ s) :
|
||||
∀ x ∈ s, Complex.laplace (f₁ + f₂) x = (Complex.laplace f₁) x + (Complex.laplace f₂) x := by
|
||||
∀ x ∈ s, Δ (f₁ + f₂) x = (Δ f₁) x + (Δ f₂) x := by
|
||||
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
|
@ -124,39 +131,21 @@ theorem laplace_add_ContDiffOn
|
|||
rw [add_comm]
|
||||
|
||||
|
||||
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by
|
||||
intro v
|
||||
unfold Complex.laplace
|
||||
rw [partialDeriv_smul₂]
|
||||
rw [partialDeriv_smul₂]
|
||||
rw [partialDeriv_smul₂]
|
||||
repeat
|
||||
rw [partialDeriv_smul₂]
|
||||
simp
|
||||
|
||||
|
||||
theorem laplace_compContLin {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
|
||||
unfold Complex.laplace
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
rw [partialDeriv_compContLin]
|
||||
simp
|
||||
theorem laplace_compCLMAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h : ContDiffAt ℝ 2 f x) :
|
||||
Δ (l ∘ f) x = (l ∘ (Δ f)) x := by
|
||||
|
||||
exact (partialDeriv_contDiff ℝ h Complex.I).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||
exact h.differentiable one_le_two
|
||||
|
||||
|
||||
theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h : ContDiffAt ℝ 2 f x) :
|
||||
Complex.laplace (l ∘ f) x = (l ∘ (Complex.laplace f)) x := by
|
||||
|
||||
have A₂ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||||
have : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by
|
||||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by
|
||||
obtain ⟨u, hu₁, hu₂⟩ : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by
|
||||
apply ContDiffAt.contDiffOn h
|
||||
rfl
|
||||
obtain ⟨u, hu₁, hu₂⟩ := this
|
||||
obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁
|
||||
use v
|
||||
constructor
|
||||
|
@ -166,7 +155,6 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
|||
constructor
|
||||
· exact hv₃
|
||||
· exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁
|
||||
obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ := A₂
|
||||
|
||||
have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by
|
||||
intro w
|
||||
|
@ -192,17 +180,24 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h :
|
|||
simp
|
||||
|
||||
-- DifferentiableAt ℝ (partialDeriv ℝ Complex.I f) x
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) Complex.I)
|
||||
rfl
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) Complex.I) le_rfl
|
||||
|
||||
-- DifferentiableAt ℝ (partialDeriv ℝ 1 f) x
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1)
|
||||
rfl
|
||||
apply ContDiffAt.differentiableAt (partialDeriv_contDiffAt ℝ (ContDiffOn.contDiffAt hv₄ hv₁) 1) le_rfl
|
||||
|
||||
|
||||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
|
||||
let l' := (l : F →L[ℝ] G)
|
||||
have : Complex.laplace (l' ∘ f) = l' ∘ (Complex.laplace f) := by
|
||||
exact laplace_compContLin h
|
||||
exact this
|
||||
theorem laplace_compCLM
|
||||
{f : ℂ → F}
|
||||
{l : F →L[ℝ] G}
|
||||
(h : ContDiff ℝ 2 f) :
|
||||
Δ (l ∘ f) = l ∘ (Δ f) := by
|
||||
funext z
|
||||
exact laplace_compCLMAt h.contDiffAt
|
||||
|
||||
|
||||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} :
|
||||
Δ (l ∘ f) = l ∘ (Δ f) := by
|
||||
unfold Complex.laplace
|
||||
repeat
|
||||
rw [partialDeriv_compCLE]
|
||||
simp
|
||||
|
|
Loading…
Reference in New Issue