working…

This commit is contained in:
Stefan Kebekus 2024-12-20 08:16:22 +01:00
parent 1e28302c17
commit 6e9cb9e62b
4 changed files with 166 additions and 42 deletions

View File

@ -16,6 +16,15 @@ theorem MeromorphicOn.restrict
MeromorphicOn f (Metric.closedBall 0 r) := by
exact fun x a => h₁f x trivial
theorem MeromorphicOn.restrict_inv
{f : }
(h₁f : MeromorphicOn f )
(r : ) :
h₁f.inv.restrict r = (h₁f.restrict r).inv := by
funext x
simp
noncomputable def MeromorphicOn.N_zero
{f : }
(hf : MeromorphicOn f ) :
@ -28,6 +37,43 @@ noncomputable def MeromorphicOn.N_infty
:=
fun r ↦ ∑ᶠ z, (max 0 (-((hf.restrict r).divisor z))) * log (r * ‖z‖⁻¹)
theorem Nevanlinna_counting₀
{f : }
(hf : MeromorphicOn f ) :
hf.inv.N_infty = hf.N_zero := by
funext r
unfold MeromorphicOn.N_zero MeromorphicOn.N_infty
let A := (hf.restrict r).divisor.finiteSupport (isCompact_closedBall 0 r)
repeat
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
apply Finset.sum_congr rfl
intro x hx
congr
rw [hf.restrict_inv r]
rw [MeromorphicOn.divisor_inv]
simp
--
exact fun x a => hf x trivial
--
intro x
contrapose
simp
intro hx
rw [hx]
tauto
--
intro x
contrapose
simp
intro hx h₁x
rw [hf.restrict_inv r] at h₁x
have hh : MeromorphicOn f (Metric.closedBall 0 r) := hf.restrict r
rw [hh.divisor_inv] at h₁x
simp at h₁x
rw [hx] at h₁x
tauto
theorem Nevanlinna_counting
{f : }
(hf : MeromorphicOn f ) :
@ -73,27 +119,6 @@ noncomputable def MeromorphicOn.m_infty
:=
fun r ↦ (2 * π)⁻¹ * ∫ x in (0)..(2 * π), logpos ‖f (circleMap 0 r x)‖
theorem Nevanlinna_proximity₀
{f : }
{r : }
(h₁f : MeromorphicOn f )
(hr : 0 < r) :
(2 * π)⁻¹ * ∫ x in (0)..(2 * π), log ‖f (circleMap 0 r x)‖ = (h₁f.m_infty r) - (h₁f.inv.m_infty r) := by
unfold MeromorphicOn.m_infty
rw [← mul_sub]; congr
rw [← intervalIntegral.integral_sub]; congr
funext x
simp_rw [loglogpos]; congr
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
--
apply MeromorphicOn.integrable_logpos_abs_f hr
intro z hx
exact h₁f z trivial
--
apply MeromorphicOn.integrable_logpos_abs_f hr
exact MeromorphicOn.inv_iff.mpr fun x a => h₁f x trivial
theorem Nevanlinna_proximity
{f : }
@ -101,16 +126,6 @@ theorem Nevanlinna_proximity
(h₁f : MeromorphicOn f ) :
(2 * π)⁻¹ * ∫ x in (0)..(2 * π), log ‖f (circleMap 0 r x)‖ = (h₁f.m_infty r) - (h₁f.inv.m_infty r) := by
by_cases h₁r : r = 0
· unfold MeromorphicOn.m_infty
rw [← mul_sub]; congr
simp only [h₁r, circleMap_zero_radius, Function.const_apply, intervalIntegral.integral_const, sub_zero, smul_eq_mul, Pi.inv_apply, norm_inv]
rw [← mul_sub]; congr
exact loglogpos
by_cases h₂r : 0 < r
· exact Nevanlinna_proximity₀ h₁f h₂r
unfold MeromorphicOn.m_infty
rw [← mul_sub]; congr
rw [← intervalIntegral.integral_sub]; congr
@ -119,30 +134,44 @@ theorem Nevanlinna_proximity
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
--
apply MeromorphicOn.integrable_logpos_abs_f
intro z hx
exact h₁f z trivial
--
apply MeromorphicOn.integrable_logpos_abs_f
exact MeromorphicOn.inv_iff.mpr fun x a => h₁f x trivial
sorry
sorry
noncomputable def MeromorphicOn.T_infty
{f : }
(hf : MeromorphicOn f ) :
:=
hf.m_infty + hf.N_infty
theorem Nevanlinna_firstMain₁
{f : }
(h₁f : MeromorphicOn f )
(h₂f : StronglyMeromorphicAt f 0)
(h₃f : f 0 ≠ 0) :
(fun r ↦ log ‖f 0‖) + h₁f.inv.T_infty = h₁f.T_infty := by
rw [add_eq_of_eq_sub]
unfold MeromorphicOn.T_infty
have {A B C D : } : A + B - (C + D) = A - C + (B - D) := by
ring
rw [this]
clear this
funext r
simp
unfold MeromorphicOn.T_infty
rw [← Nevanlinna_proximity h₁f]
unfold MeromorphicOn.N_infty
unfold MeromorphicOn.m_infty
simp
sorry
theorem Nevanlinna_firstMain₂

View File

@ -147,4 +147,74 @@ theorem MeromorphicAt.order_mul
· exact Set.mem_inter h₃t₁ h₃t₂
theorem MeromorphicAt.order_neg_zero_iff
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
hf.order ≠ ↔ ∃ (g : ), AnalyticAt g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = (z - z₀) ^ (hf.order.untop' 0) • g z := by
constructor
· intro h
exact (hf.order_eq_int_iff (hf.order.untop' 0)).1 (Eq.symm (untop'_of_ne_top h))
· rw [← hf.order_eq_int_iff]
intro h
exact Option.ne_none_iff_exists'.mpr ⟨hf.order.untop' 0, h⟩
theorem MeromorphicAt.order_inv
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
hf.order = -hf.inv.order := by
by_cases h₂f : hf.order =
· simp [h₂f]
have : hf.inv.order = := by
rw [hf.inv.order_eq_top_iff]
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [hf.order_eq_top_iff] at h₂f
rw [eventually_nhdsWithin_iff] at h₂f
rw [eventually_nhds_iff] at h₂f
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f
use t
constructor
· intro y h₁y h₂y
simp
rw [h₁t y h₁y h₂y]
· exact ⟨h₂t, h₃t⟩
rw [this]
simp
· have : hf.order = hf.order.untop' 0 := by
simp [h₂f, untop'_of_ne_top]
rw [this]
rw [eq_comm]
rw [neg_eq_iff_eq_neg]
apply (hf.inv.order_eq_int_iff (-hf.order.untop' 0)).2
rw [hf.order_eq_int_iff] at this
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
use g⁻¹
constructor
· exact AnalyticAt.inv h₁g h₂g
· constructor
· simp [h₂g]
· rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₃g
rw [eventually_nhds_iff] at h₃g
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₃g
use t
constructor
· intro y h₁y h₂y
simp
let A := h₁t y h₁y h₂y
rw [A]
simp
rw [mul_comm]
· exact ⟨h₂t, h₃t⟩
-- might want theorem MeromorphicAt.order_zpow

View File

@ -146,6 +146,29 @@ theorem MeromorphicOn.divisor_mul
simp
theorem MeromorphicOn.divisor_inv
{f: }
{U : Set }
(h₁f : MeromorphicOn f U) :
h₁f.inv.divisor.toFun = -h₁f.divisor.toFun := by
funext z
by_cases hz : z ∈ U
· rw [MeromorphicOn.divisor_def₁]
simp
rw [MeromorphicOn.divisor_def₁]
rw [MeromorphicAt.order_inv]
simp
by_cases h₂f : (h₁f z hz).order =
· simp [h₂f]
· let A := untop'_of_ne_top (d := 0) h₂f
rw [← A]
exact rfl
repeat exact hz
· unfold MeromorphicOn.divisor
simp [hz]
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
{f : }
{U : Set }

View File

@ -144,7 +144,11 @@ theorem MeromorphicOn.integrable_log_abs_f
rw [this] at h₁f
exact MeromorphicOn.integrable_log_abs_f₀ h₂r h₁f
· have t₀ : 0 < -r := by
sorry
have hr_neg : r < 0 := by
apply lt_of_le_of_ne
exact le_of_not_lt h₂r
exact h₁r
linarith
have : |r| = -r := by
apply abs_of_neg
exact Left.neg_pos_iff.mp t₀
@ -157,13 +161,11 @@ theorem MeromorphicOn.integrable_log_abs_f
simpa
theorem MeromorphicOn.integrable_logpos_abs_f
{f : }
{r : }
(hr : 0 < r)
-- WARNING: Not optimal. It suffices to be meromorphic on the Sphere
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ) r)) :
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ) |r|)) :
IntervalIntegrable (fun z ↦ logpos ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by
simp_rw [logpos_norm]
@ -171,8 +173,8 @@ theorem MeromorphicOn.integrable_logpos_abs_f
apply IntervalIntegrable.add
apply IntervalIntegrable.const_mul
exact MeromorphicOn.integrable_log_abs_f hr h₁f
exact MeromorphicOn.integrable_log_abs_f h₁f
apply IntervalIntegrable.const_mul
apply IntervalIntegrable.norm
exact MeromorphicOn.integrable_log_abs_f hr h₁f
exact MeromorphicOn.integrable_log_abs_f h₁f