Update meromorphicOn_decompose.lean
This commit is contained in:
parent
4145a9ebc9
commit
6d403874e2
|
@ -36,11 +36,15 @@ theorem MeromorphicOn.decompose
|
||||||
∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p) * g z ) U) := by
|
∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p) * g z ) U) := by
|
||||||
|
|
||||||
let g₁ : ℂ → ℂ := f * (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p))
|
let g₁ : ℂ → ℂ := f * (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p))
|
||||||
have h₁g₁ : MeromorphicOn g₁ U := by sorry
|
have h₁g₁ : MeromorphicOn g₁ U := by
|
||||||
|
sorry
|
||||||
let g := h₁g₁.makeStronglyMeromorphicOn
|
let g := h₁g₁.makeStronglyMeromorphicOn
|
||||||
have h₁g : MeromorphicOn g U := by sorry
|
have h₁g : MeromorphicOn g U := by
|
||||||
have h₂g : ∀ z : U, (h₁g z.1 z.2).order = 0 := by sorry
|
sorry
|
||||||
have h₃g : StronglyMeromorphicOn g U := by sorry
|
have h₂g : ∀ z : U, (h₁g z.1 z.2).order = 0 := by
|
||||||
|
sorry
|
||||||
|
have h₃g : StronglyMeromorphicOn g U := by
|
||||||
|
sorry
|
||||||
have h₄g : AnalyticOnNhd ℂ g U := by
|
have h₄g : AnalyticOnNhd ℂ g U := by
|
||||||
intro z hz
|
intro z hz
|
||||||
apply StronglyMeromorphicAt.analytic (h₃g z hz)
|
apply StronglyMeromorphicAt.analytic (h₃g z hz)
|
||||||
|
@ -51,10 +55,8 @@ theorem MeromorphicOn.decompose
|
||||||
· constructor
|
· constructor
|
||||||
· intro z hz
|
· intro z hz
|
||||||
rw [← (h₄g z hz).order_eq_zero_iff]
|
rw [← (h₄g z hz).order_eq_zero_iff]
|
||||||
|
|
||||||
have A := (h₄g z hz).meromorphicAt_order
|
have A := (h₄g z hz).meromorphicAt_order
|
||||||
rw [h₂g ⟨z, hz⟩] at A
|
rw [h₂g ⟨z, hz⟩] at A
|
||||||
|
|
||||||
have t₀ : (h₄g z hz).order ≠ ⊤ := by
|
have t₀ : (h₄g z hz).order ≠ ⊤ := by
|
||||||
by_contra hC
|
by_contra hC
|
||||||
rw [hC] at A
|
rw [hC] at A
|
||||||
|
|
Loading…
Reference in New Issue