Update holomorphic_primitive2.lean
This commit is contained in:
		| @@ -539,24 +539,29 @@ theorem primitive_additivity | |||||||
| theorem primitive_additivity' | theorem primitive_additivity' | ||||||
|   {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] |   {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] | ||||||
|   (f : ℂ  → E) |   (f : ℂ  → E) | ||||||
|   (hf : Differentiable ℂ f) |   (z₀ : ℂ) | ||||||
|   (z₀ z₁ : ℂ) : |   (R : ℝ) | ||||||
|   primitive z₀ f = fun z ↦ (primitive z₁ f) z + (primitive z₀ f z₁) := by |   (hf : DifferentiableOn ℂ f (Metric.ball z₀ R)) | ||||||
|  |   (z₁ : ℂ) | ||||||
|   nth_rw 1 [← sub_zero (primitive z₀ f)] |   (hz₁ : z₁ ∈ (Metric.ball z₀ R)) | ||||||
|   rw [← primitive_additivity f hf z₀ z₁] |   : | ||||||
|  |   ∃ ε : ℝ, ∀ z ∈ (Metric.ball z₁ ε), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by | ||||||
|   funext z |   sorry | ||||||
|   simp |  | ||||||
|   abel |  | ||||||
|  |  | ||||||
|  |  | ||||||
| theorem primitive_hasDerivAt | theorem primitive_hasDerivAt | ||||||
|   {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] |   {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] | ||||||
|   {f : ℂ  → E} |   (f : ℂ  → E) | ||||||
|   (hf : Differentiable ℂ f) |   (z₀ z : ℂ) | ||||||
|   (z₀ z : ℂ) : |   (R : ℝ) | ||||||
|  |   (hf : DifferentiableOn ℂ f (Metric.ball z₀ R)) | ||||||
|  |   (hz : z ∈ Metric.ball z₀ R) : | ||||||
|   HasDerivAt (primitive z₀ f) (f z) z := by |   HasDerivAt (primitive z₀ f) (f z) z := by | ||||||
|  |  | ||||||
|  |   let A := primitive_additivity' f z₀ R hf z hz | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|   rw [primitive_additivity' f hf z₀ z] |   rw [primitive_additivity' f hf z₀ z] | ||||||
|   rw [← add_zero (f z)] |   rw [← add_zero (f z)] | ||||||
|   apply HasDerivAt.add |   apply HasDerivAt.add | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus