Update holomorphic_primitive2.lean

This commit is contained in:
Stefan Kebekus 2024-08-05 12:41:05 +02:00
parent 9294d89ef1
commit 6759baea2f
1 changed files with 18 additions and 13 deletions

View File

@ -539,24 +539,29 @@ theorem primitive_additivity
theorem primitive_additivity' theorem primitive_additivity'
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : → E) (f : → E)
(hf : Differentiable f) (z₀ : )
(z₀ z₁ : ) : (R : )
primitive z₀ f = fun z ↦ (primitive z₁ f) z + (primitive z₀ f z₁) := by (hf : DifferentiableOn f (Metric.ball z₀ R))
(z₁ : )
nth_rw 1 [← sub_zero (primitive z₀ f)] (hz₁ : z₁ ∈ (Metric.ball z₀ R))
rw [← primitive_additivity f hf z₀ z₁] :
∃ ε : , ∀ z ∈ (Metric.ball z₁ ε), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
funext z sorry
simp
abel
theorem primitive_hasDerivAt theorem primitive_hasDerivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E} (f : → E)
(hf : Differentiable f) (z₀ z : )
(z₀ z : ) : (R : )
(hf : DifferentiableOn f (Metric.ball z₀ R))
(hz : z ∈ Metric.ball z₀ R) :
HasDerivAt (primitive z₀ f) (f z) z := by HasDerivAt (primitive z₀ f) (f z) z := by
let A := primitive_additivity' f z₀ R hf z hz
rw [primitive_additivity' f hf z₀ z] rw [primitive_additivity' f hf z₀ z]
rw [← add_zero (f z)] rw [← add_zero (f z)]
apply HasDerivAt.add apply HasDerivAt.add