Update holomorphic_primitive2.lean

This commit is contained in:
Stefan Kebekus
2024-08-05 12:41:05 +02:00
parent 9294d89ef1
commit 6759baea2f

View File

@@ -539,24 +539,29 @@ theorem primitive_additivity
theorem primitive_additivity'
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : E)
(hf : Differentiable f)
(z₀ z₁ : ) :
primitive z₀ f = fun z (primitive z₁ f) z + (primitive z₀ f z₁) := by
nth_rw 1 [ sub_zero (primitive z₀ f)]
rw [ primitive_additivity f hf z₀ z₁]
funext z
simp
abel
(z₀ : )
(R : )
(hf : DifferentiableOn f (Metric.ball z₀ R))
(z₁ : )
(hz₁ : z₁ (Metric.ball z₀ R))
:
ε : , z (Metric.ball z₁ ε), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
sorry
theorem primitive_hasDerivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : E}
(hf : Differentiable f)
(z₀ z : ) :
(f : E)
(z₀ z : )
(R : )
(hf : DifferentiableOn f (Metric.ball z₀ R))
(hz : z Metric.ball z₀ R) :
HasDerivAt (primitive z₀ f) (f z) z := by
let A := primitive_additivity' f z₀ R hf z hz
rw [primitive_additivity' f hf z₀ z]
rw [ add_zero (f z)]
apply HasDerivAt.add