Add leftovers
This commit is contained in:
parent
f5a835764b
commit
6329e081a3
59
Nevanlinna/leftovers/analyticOnNhd_divisor.lean
Normal file
59
Nevanlinna/leftovers/analyticOnNhd_divisor.lean
Normal file
@ -0,0 +1,59 @@
|
||||
import Nevanlinna.analyticAt
|
||||
import Nevanlinna.divisor
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
|
||||
noncomputable def AnalyticOnNhd.zeroDivisor
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : AnalyticOnNhd ℂ f U) :
|
||||
Divisor U where
|
||||
|
||||
toFun := by
|
||||
intro z
|
||||
if hz : z ∈ U then
|
||||
exact ((hf z hz).order.toNat : ℤ)
|
||||
else
|
||||
exact 0
|
||||
|
||||
supportInU := by
|
||||
intro z hz
|
||||
simp at hz
|
||||
by_contra h₂z
|
||||
simp [h₂z] at hz
|
||||
|
||||
locallyFiniteInU := by
|
||||
intro z hz
|
||||
|
||||
apply eventually_nhdsWithin_iff.2
|
||||
rw [eventually_nhds_iff]
|
||||
|
||||
rcases AnalyticAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
|
||||
· rw [eventually_nhds_iff] at h
|
||||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
|
||||
use N
|
||||
constructor
|
||||
· intro y h₁y _
|
||||
by_cases h₃y : y ∈ U
|
||||
· simp [h₃y]
|
||||
right
|
||||
rw [AnalyticAt.order_eq_top_iff (hf y h₃y)]
|
||||
rw [eventually_nhds_iff]
|
||||
use N
|
||||
· simp [h₃y]
|
||||
· tauto
|
||||
|
||||
· rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at h
|
||||
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
|
||||
use N
|
||||
constructor
|
||||
· intro y h₁y h₂y
|
||||
by_cases h₃y : y ∈ U
|
||||
· simp [h₃y]
|
||||
left
|
||||
rw [AnalyticAt.order_eq_zero_iff (hf y h₃y)]
|
||||
exact h₁N y h₁y h₂y
|
||||
· simp [h₃y]
|
||||
· tauto
|
461
Nevanlinna/leftovers/analyticOnNhd_zeroSet.lean
Normal file
461
Nevanlinna/leftovers/analyticOnNhd_zeroSet.lean
Normal file
@ -0,0 +1,461 @@
|
||||
import Mathlib.Analysis.Analytic.Constructions
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Mathlib.Analysis.Complex.Basic
|
||||
import Nevanlinna.analyticAt
|
||||
|
||||
|
||||
noncomputable def AnalyticOnNhd.order
|
||||
{f : ℂ → ℂ} {U : Set ℂ} (hf : AnalyticOnNhd ℂ f U) : U → ℕ∞ := fun u ↦ (hf u u.2).order
|
||||
|
||||
|
||||
theorem AnalyticOnNhd.order_eq_nat_iff
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : U}
|
||||
(hf : AnalyticOnNhd ℂ f U)
|
||||
(n : ℕ) :
|
||||
hf.order z₀ = ↑n ↔ ∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
|
||||
|
||||
constructor
|
||||
-- Direction →
|
||||
intro hn
|
||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ z₀.2) n).1 hn
|
||||
|
||||
-- Define a candidate function; this is (f z) / (z - z₀) ^ n with the
|
||||
-- removable singularity removed
|
||||
let g : ℂ → ℂ := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
|
||||
|
||||
-- Describe g near z₀
|
||||
have g_near_z₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by
|
||||
rw [eventually_nhds_iff]
|
||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
|
||||
use t
|
||||
constructor
|
||||
· intro y h₁y
|
||||
by_cases h₂y : y = z₀
|
||||
· dsimp [g]; simp [h₂y]
|
||||
· dsimp [g]; simp [h₂y]
|
||||
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
|
||||
exact h₁t y h₁y
|
||||
norm_num
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
· constructor
|
||||
· assumption
|
||||
· assumption
|
||||
|
||||
-- Describe g near points z₁ that are different from z₀
|
||||
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
||||
intro hz₁
|
||||
rw [eventually_nhds_iff]
|
||||
use {z₀.1}ᶜ
|
||||
constructor
|
||||
· intro y hy
|
||||
simp at hy
|
||||
simp [g, hy]
|
||||
· exact ⟨isOpen_compl_singleton, hz₁⟩
|
||||
|
||||
-- Use g and show that it has all required properties
|
||||
use g
|
||||
constructor
|
||||
· -- AnalyticOn ℂ g U
|
||||
intro z h₁z
|
||||
by_cases h₂z : z = z₀
|
||||
· rw [h₂z]
|
||||
apply AnalyticAt.congr h₁gloc
|
||||
exact Filter.EventuallyEq.symm g_near_z₀
|
||||
· simp_rw [eq_comm] at g_near_z₁
|
||||
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
|
||||
apply AnalyticAt.div
|
||||
exact hf z h₁z
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id
|
||||
apply analyticAt_const
|
||||
simp
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
· constructor
|
||||
· simp [g]; tauto
|
||||
· intro z
|
||||
by_cases h₂z : z = z₀
|
||||
· rw [h₂z, g_near_z₀.self_of_nhds]
|
||||
exact h₃gloc.self_of_nhds
|
||||
· rw [(g_near_z₁ h₂z).self_of_nhds]
|
||||
simp [h₂z]
|
||||
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel₀]
|
||||
simp; norm_num
|
||||
rw [sub_eq_zero]
|
||||
tauto
|
||||
|
||||
-- direction ←
|
||||
intro h
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
||||
dsimp [AnalyticOnNhd.order]
|
||||
rw [AnalyticAt.order_eq_nat_iff]
|
||||
use g
|
||||
exact ⟨h₁g z₀ z₀.2, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||
|
||||
|
||||
theorem AnalyticOnNhd.support_of_order₁
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hf : AnalyticOnNhd ℂ f U) :
|
||||
Function.support hf.order = U.restrict f⁻¹' {0} := by
|
||||
ext u
|
||||
simp [AnalyticOnNhd.order]
|
||||
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
|
||||
|
||||
|
||||
theorem AnalyticOnNhd.eliminateZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{A : Finset U}
|
||||
(hf : AnalyticOnNhd ℂ f U)
|
||||
(n : U → ℕ) :
|
||||
(∀ a ∈ A, hf.order a = n a) → ∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
|
||||
|
||||
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
|
||||
|
||||
-- case empty
|
||||
simp
|
||||
use f
|
||||
simp
|
||||
exact hf
|
||||
|
||||
-- case insert
|
||||
intro b₀ B hb iHyp
|
||||
intro hBinsert
|
||||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
||||
|
||||
have : (h₁g₀ b₀ b₀.2).order = n b₀ := by
|
||||
|
||||
rw [← hBinsert b₀ (Finset.mem_insert_self b₀ B)]
|
||||
|
||||
let φ := fun z ↦ (∏ a ∈ B, (z - a.1) ^ n a)
|
||||
|
||||
have : f = fun z ↦ φ z * g₀ z := by
|
||||
funext z
|
||||
rw [h₃g₀ z]
|
||||
rfl
|
||||
simp_rw [this]
|
||||
|
||||
have h₁φ : AnalyticAt ℂ φ b₀ := by
|
||||
dsimp [φ]
|
||||
apply Finset.analyticAt_prod
|
||||
intro b _
|
||||
apply AnalyticAt.pow
|
||||
apply AnalyticAt.sub
|
||||
apply analyticAt_id
|
||||
exact analyticAt_const
|
||||
|
||||
have h₂φ : h₁φ.order = (0 : ℕ) := by
|
||||
rw [AnalyticAt.order_eq_nat_iff h₁φ 0]
|
||||
use φ
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· dsimp [φ]
|
||||
push_neg
|
||||
rw [Finset.prod_ne_zero_iff]
|
||||
intro a ha
|
||||
simp
|
||||
have : ¬ (b₀.1 - a.1 = 0) := by
|
||||
by_contra C
|
||||
rw [sub_eq_zero] at C
|
||||
rw [SetCoe.ext C] at hb
|
||||
tauto
|
||||
tauto
|
||||
· simp
|
||||
|
||||
rw [AnalyticAt.order_mul h₁φ (h₁g₀ b₀ b₀.2)]
|
||||
|
||||
rw [h₂φ]
|
||||
simp
|
||||
|
||||
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOnNhd.order_eq_nat_iff h₁g₀ (n b₀)).1 this
|
||||
|
||||
use g₁
|
||||
constructor
|
||||
· exact h₁g₁
|
||||
· constructor
|
||||
· intro a h₁a
|
||||
by_cases h₂a : a = b₀
|
||||
· rwa [h₂a]
|
||||
· let A' := Finset.mem_of_mem_insert_of_ne h₁a h₂a
|
||||
let B' := h₃g₁ a
|
||||
let C' := h₂g₀ a A'
|
||||
rw [B'] at C'
|
||||
exact right_ne_zero_of_smul C'
|
||||
· intro z
|
||||
let A' := h₃g₀ z
|
||||
rw [h₃g₁ z] at A'
|
||||
rw [A']
|
||||
rw [← smul_assoc]
|
||||
congr
|
||||
simp
|
||||
rw [Finset.prod_insert]
|
||||
ring
|
||||
exact hb
|
||||
|
||||
|
||||
theorem XX
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOnNhd ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∀ (hu : u ∈ U), (h₁f u hu).order.toNat = (h₁f u hu).order := by
|
||||
|
||||
intro hu
|
||||
apply ENat.coe_toNat
|
||||
by_contra C
|
||||
rw [(h₁f u hu).order_eq_top_iff] at C
|
||||
rw [← (h₁f u hu).frequently_zero_iff_eventually_zero] at C
|
||||
obtain ⟨u₁, h₁u₁, h₂u₁⟩ := h₂f
|
||||
rw [(h₁f.eqOn_zero_of_preconnected_of_frequently_eq_zero hU hu C) h₁u₁] at h₂u₁
|
||||
tauto
|
||||
|
||||
|
||||
theorem discreteZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOnNhd ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
DiscreteTopology ((U.restrict f)⁻¹' {0}) := by
|
||||
|
||||
simp_rw [← singletons_open_iff_discrete]
|
||||
simp_rw [Metric.isOpen_singleton_iff]
|
||||
|
||||
intro z
|
||||
|
||||
let A := XX hU h₁f h₂f z.1.2
|
||||
rw [eq_comm] at A
|
||||
rw [AnalyticAt.order_eq_nat_iff] at A
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := A
|
||||
|
||||
rw [Metric.eventually_nhds_iff_ball] at h₃g
|
||||
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by
|
||||
have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g
|
||||
have : {0}ᶜ ∈ nhds (g z) := by
|
||||
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||||
|
||||
let F := h₄g.preimage_mem_nhds this
|
||||
rw [Metric.mem_nhds_iff] at F
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := F
|
||||
use ε
|
||||
constructor; exact h₁ε
|
||||
intro y hy
|
||||
let G := h₂ε hy
|
||||
simp at G
|
||||
exact G
|
||||
obtain ⟨ε₁, h₁ε₁⟩ := this
|
||||
|
||||
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
|
||||
use min ε₁ ε₂
|
||||
constructor
|
||||
· have : 0 < min ε₁ ε₂ := by
|
||||
rw [lt_min_iff]
|
||||
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
|
||||
exact this
|
||||
|
||||
intro y
|
||||
intro h₁y
|
||||
|
||||
have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by
|
||||
simp
|
||||
calc dist y z
|
||||
_ < min ε₁ ε₂ := by assumption
|
||||
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
|
||||
|
||||
have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by
|
||||
simp
|
||||
calc dist y z
|
||||
_ < min ε₁ ε₂ := by assumption
|
||||
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||
|
||||
have F := h₂ε₂ y.1 h₂y
|
||||
have : f y = 0 := by exact y.2
|
||||
rw [this] at F
|
||||
simp at F
|
||||
|
||||
have : g y.1 ≠ 0 := by
|
||||
exact h₁ε₁.2 y h₃y
|
||||
simp [this] at F
|
||||
ext
|
||||
rw [sub_eq_zero] at F
|
||||
tauto
|
||||
|
||||
|
||||
theorem finiteZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOnNhd ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
Set.Finite (U.restrict f⁻¹' {0}) := by
|
||||
|
||||
have closedness : IsClosed (U.restrict f⁻¹' {0}) := by
|
||||
apply IsClosed.preimage
|
||||
apply continuousOn_iff_continuous_restrict.1
|
||||
exact h₁f.continuousOn
|
||||
exact isClosed_singleton
|
||||
|
||||
have : CompactSpace U := by
|
||||
exact isCompact_iff_compactSpace.mp h₂U
|
||||
|
||||
apply (IsClosed.isCompact closedness).finite
|
||||
exact discreteZeros h₁U h₁f h₂f
|
||||
|
||||
|
||||
theorem AnalyticOnNhdCompact.eliminateZeros
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOnNhd ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOnNhd ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
||||
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
|
||||
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
||||
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
intro a _
|
||||
dsimp [n, AnalyticOnNhd.order]
|
||||
rw [eq_comm]
|
||||
apply XX h₁U
|
||||
exact h₂f
|
||||
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
use A
|
||||
|
||||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
||||
intro z
|
||||
rw [h₃g z]
|
||||
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· intro z h₁z
|
||||
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
||||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact C
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
· exact inter
|
||||
|
||||
|
||||
theorem AnalyticOnNhdCompact.eliminateZeros₂
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOnNhd ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ (finiteZeros h₁U h₂U h₁f h₂f).toFinset, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
||||
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
|
||||
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
||||
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
intro a _
|
||||
dsimp [n, AnalyticOnNhd.order]
|
||||
rw [eq_comm]
|
||||
apply XX h₁U
|
||||
exact h₂f
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
|
||||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
||||
intro z
|
||||
rw [h₃g z]
|
||||
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· intro z h₁z
|
||||
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
||||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact C
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
· exact h₃g
|
||||
|
||||
|
||||
theorem AnalyticOnNhdCompact.eliminateZeros₁
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁U : IsPreconnected U)
|
||||
(h₂U : IsCompact U)
|
||||
(h₁f : AnalyticOnNhd ℂ f U)
|
||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ), AnalyticOnNhd ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ a, (z - a) ^ (h₁f.order a).toNat) • g z := by
|
||||
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
|
||||
let n : U → ℕ := fun z ↦ (h₁f z z.2).order.toNat
|
||||
|
||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||
intro a _
|
||||
dsimp [n, AnalyticOnNhd.order]
|
||||
rw [eq_comm]
|
||||
apply XX h₁U
|
||||
exact h₂f
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
|
||||
use g
|
||||
|
||||
have inter : ∀ (z : ℂ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
|
||||
intro z
|
||||
rw [h₃g z]
|
||||
|
||||
constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· intro z h₁z
|
||||
by_cases h₂z : ⟨z, h₁z⟩ ∈ ↑A.toSet
|
||||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact C
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
· intro z
|
||||
|
||||
let φ : U → ℂ := fun a ↦ (z - ↑a) ^ (h₁f.order a).toNat
|
||||
have hφ : Function.mulSupport φ ⊆ A := by
|
||||
intro x hx
|
||||
simp [φ] at hx
|
||||
have : (h₁f.order x).toNat ≠ 0 := by
|
||||
by_contra C
|
||||
rw [C] at hx
|
||||
simp at hx
|
||||
simp [A]
|
||||
exact AnalyticAt.supp_order_toNat (h₁f x x.2) this
|
||||
rw [finprod_eq_prod_of_mulSupport_subset φ hφ]
|
||||
rw [inter z]
|
||||
rfl
|
77
Nevanlinna/leftovers/bilinear.lean
Normal file
77
Nevanlinna/leftovers/bilinear.lean
Normal file
@ -0,0 +1,77 @@
|
||||
/-
|
||||
Copyright (c) 2024 Stefan Kebekus. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Stefan Kebekus
|
||||
-/
|
||||
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
|
||||
/-!
|
||||
|
||||
# Canoncial Elements in Tensor Powers of Real Inner Product Spaces
|
||||
|
||||
Given an `InnerProductSpace ℝ E`, this file defines two canonical tensors, which
|
||||
are relevant when for a coordinate-free definition of differential operators
|
||||
such as the Laplacian.
|
||||
|
||||
* `InnerProductSpace.canonicalContravariantTensor E : E ⊗[ℝ] E →ₗ[ℝ] ℝ`. This is
|
||||
the element corresponding to the inner product.
|
||||
|
||||
* If `E` is finite-dimensional, then `E ⊗[ℝ] E` is canonically isomorphic to its
|
||||
dual. Accordingly, there exists an element
|
||||
`InnerProductSpace.canonicalCovariantTensor E : E ⊗[ℝ] E` that corresponds to
|
||||
`InnerProductSpace.canonicalContravariantTensor E` under this identification.
|
||||
|
||||
The theorem `InnerProductSpace.canonicalCovariantTensorRepresentation` shows
|
||||
that `InnerProductSpace.canonicalCovariantTensor E` can be computed from any
|
||||
orthonormal basis `v` as `∑ i, (v i) ⊗ₜ[ℝ] (v i)`.
|
||||
|
||||
-/
|
||||
|
||||
open InnerProductSpace
|
||||
open TensorProduct
|
||||
|
||||
|
||||
noncomputable def InnerProductSpace.canonicalContravariantTensor
|
||||
{E : Type*} [NormedAddCommGroup E] [InnerProductSpace ℝ E]
|
||||
: E ⊗[ℝ] E →ₗ[ℝ] ℝ := TensorProduct.lift bilinFormOfRealInner
|
||||
|
||||
|
||||
noncomputable def InnerProductSpace.canonicalCovariantTensor
|
||||
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
||||
: E ⊗[ℝ] E := ∑ i, ((stdOrthonormalBasis ℝ E) i) ⊗ₜ[ℝ] ((stdOrthonormalBasis ℝ E) i)
|
||||
|
||||
theorem InnerProductSpace.canonicalCovariantTensorRepresentation
|
||||
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace ℝ E] [FiniteDimensional ℝ E]
|
||||
[Fintype ι]
|
||||
(v : OrthonormalBasis ι ℝ E) :
|
||||
InnerProductSpace.canonicalCovariantTensor E = ∑ i, (v i) ⊗ₜ[ℝ] (v i) := by
|
||||
|
||||
let w := stdOrthonormalBasis ℝ E
|
||||
conv =>
|
||||
right
|
||||
arg 2
|
||||
intro i
|
||||
rw [← w.sum_repr' (v i)]
|
||||
simp_rw [TensorProduct.sum_tmul, TensorProduct.tmul_sum, TensorProduct.smul_tmul_smul]
|
||||
|
||||
conv =>
|
||||
right
|
||||
rw [Finset.sum_comm]
|
||||
arg 2
|
||||
intro y
|
||||
rw [Finset.sum_comm]
|
||||
arg 2
|
||||
intro x
|
||||
rw [← Finset.sum_smul]
|
||||
arg 1
|
||||
arg 2
|
||||
intro i
|
||||
rw [← real_inner_comm (w x)]
|
||||
simp_rw [OrthonormalBasis.sum_inner_mul_inner v]
|
||||
|
||||
have {i} : ∑ j, ⟪w i, w j⟫_ℝ • w i ⊗ₜ[ℝ] w j = w i ⊗ₜ[ℝ] w i := by
|
||||
rw [Fintype.sum_eq_single i, orthonormal_iff_ite.1 w.orthonormal]; simp
|
||||
intro _ _; rw [orthonormal_iff_ite.1 w.orthonormal]; simp; tauto
|
||||
simp_rw [this]
|
||||
rfl
|
104
Nevanlinna/leftovers/diffOp.lean
Normal file
104
Nevanlinna/leftovers/diffOp.lean
Normal file
@ -0,0 +1,104 @@
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
|
||||
/-
|
||||
|
||||
Let E, F, G be vector spaces over nontrivally normed field 𝕜, a homogeneus
|
||||
linear differential operator of order n is a map that attaches to every point e
|
||||
of E a linear evaluation
|
||||
|
||||
{Continuous 𝕜-multilinear maps E → F in n variables} → G
|
||||
|
||||
In other words, homogeneus linear differential operator of order n is an
|
||||
instance of the type:
|
||||
|
||||
D : E → (ContinuousMultilinearMap 𝕜 (fun _ : Fin n ↦ E) F) →ₗ[𝕜] G
|
||||
|
||||
Given any map f : E → F, one obtains a map D f : E → G by sending a point e to
|
||||
the evaluation (D e), applied to the n.th derivative of f at e
|
||||
|
||||
fun e ↦ D e (iteratedFDeriv 𝕜 n f e)
|
||||
|
||||
-/
|
||||
|
||||
@[ext]
|
||||
class HomLinDiffOp
|
||||
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||
(n : ℕ)
|
||||
(E : Type*) [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
(F : Type*) [NormedAddCommGroup F] [NormedSpace 𝕜 F]
|
||||
(G : Type*) [NormedAddCommGroup G] [NormedSpace 𝕜 G]
|
||||
where
|
||||
tensorfield : E → ( E [×n]→L[𝕜] F) →L[𝕜] G
|
||||
-- tensorfield : E → (ContinuousMultilinearMap 𝕜 (fun _ : Fin n ↦ E) F) →ₗ[𝕜] G
|
||||
|
||||
|
||||
namespace HomLinDiffOp
|
||||
|
||||
noncomputable def toFun
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
{n : ℕ}
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
|
||||
{G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
|
||||
(o : HomLinDiffOp 𝕜 n E F G)
|
||||
: (E → F) → (E → G) :=
|
||||
fun f z ↦ o.tensorfield z (iteratedFDeriv 𝕜 n f z)
|
||||
|
||||
|
||||
noncomputable def Laplace
|
||||
{𝕜 : Type*} [RCLike 𝕜]
|
||||
{n : ℕ}
|
||||
: HomLinDiffOp 𝕜 2 (EuclideanSpace 𝕜 (Fin n)) 𝕜 𝕜
|
||||
where
|
||||
tensorfield := by
|
||||
intro _
|
||||
|
||||
let v := stdOrthonormalBasis 𝕜 (EuclideanSpace 𝕜 (Fin n))
|
||||
rw [finrank_euclideanSpace_fin] at v
|
||||
|
||||
exact {
|
||||
toFun := fun f' ↦ ∑ i, f' ![v i, v i]
|
||||
map_add' := by
|
||||
intro f₁ f₂
|
||||
exact Finset.sum_add_distrib
|
||||
map_smul' := by
|
||||
intro m f
|
||||
exact Eq.symm (Finset.mul_sum Finset.univ (fun i ↦ f ![v i, v i]) m)
|
||||
cont := by
|
||||
simp
|
||||
apply continuous_finset_sum
|
||||
intro i _
|
||||
exact ContinuousEvalConst.continuous_eval_const ![v i, v i]
|
||||
}
|
||||
|
||||
|
||||
noncomputable def Gradient
|
||||
{𝕜 : Type*} [RCLike 𝕜]
|
||||
{n : ℕ}
|
||||
: HomLinDiffOp 𝕜 1 (EuclideanSpace 𝕜 (Fin n)) 𝕜 (EuclideanSpace 𝕜 (Fin n))
|
||||
where
|
||||
tensorfield := by
|
||||
intro _
|
||||
|
||||
let v := stdOrthonormalBasis 𝕜 (EuclideanSpace 𝕜 (Fin n))
|
||||
rw [finrank_euclideanSpace_fin] at v
|
||||
|
||||
exact {
|
||||
toFun := fun f' ↦ ∑ i, (f' ![v i]) • (v i)
|
||||
map_add' := by
|
||||
intro f₁ f₂
|
||||
simp; simp_rw [add_smul, Finset.sum_add_distrib]
|
||||
map_smul' := by
|
||||
intro m f
|
||||
simp; simp_rw [Finset.smul_sum, ←smul_assoc,smul_eq_mul]
|
||||
cont := by
|
||||
simp
|
||||
apply continuous_finset_sum
|
||||
intro i _
|
||||
apply Continuous.smul
|
||||
exact ContinuousEvalConst.continuous_eval_const ![v i]
|
||||
exact continuous_const
|
||||
}
|
||||
|
||||
end HomLinDiffOp
|
176
Nevanlinna/leftovers/holomorphic.lean
Normal file
176
Nevanlinna/leftovers/holomorphic.lean
Normal file
@ -0,0 +1,176 @@
|
||||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Nevanlinna.cauchyRiemann
|
||||
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G]
|
||||
|
||||
def HolomorphicAt (f : E → F) (x : E) : Prop :=
|
||||
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt ℂ f z
|
||||
|
||||
|
||||
theorem HolomorphicAt_iff
|
||||
{f : E → F}
|
||||
{x : E} :
|
||||
HolomorphicAt f x ↔ ∃ s :
|
||||
Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt ℂ f z) := by
|
||||
constructor
|
||||
· intro hf
|
||||
obtain ⟨t, h₁t, h₂t⟩ := hf
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := mem_nhds_iff.1 h₁t
|
||||
use s
|
||||
constructor
|
||||
· assumption
|
||||
· constructor
|
||||
· assumption
|
||||
· intro z hz
|
||||
exact h₂t z (h₁s hz)
|
||||
· intro hyp
|
||||
obtain ⟨s, h₁s, h₂s, hf⟩ := hyp
|
||||
use s
|
||||
constructor
|
||||
· apply (IsOpen.mem_nhds_iff h₁s).2 h₂s
|
||||
· assumption
|
||||
|
||||
|
||||
theorem HolomorphicAt_analyticAt
|
||||
[CompleteSpace F]
|
||||
{f : ℂ → F}
|
||||
{x : ℂ} :
|
||||
HolomorphicAt f x → AnalyticAt ℂ f x := by
|
||||
intro hf
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
|
||||
apply DifferentiableOn.analyticAt (s := s)
|
||||
intro z hz
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
apply h₃s
|
||||
exact hz
|
||||
exact IsOpen.mem_nhds h₁s h₂s
|
||||
|
||||
|
||||
theorem HolomorphicAt_differentiableAt
|
||||
{f : E → F}
|
||||
{x : E} :
|
||||
HolomorphicAt f x → DifferentiableAt ℂ f x := by
|
||||
intro hf
|
||||
obtain ⟨s, _, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hf
|
||||
exact h₃s x h₂s
|
||||
|
||||
|
||||
theorem HolomorphicAt_isOpen
|
||||
(f : E → F) :
|
||||
IsOpen { x : E | HolomorphicAt f x } := by
|
||||
|
||||
rw [← subset_interior_iff_isOpen]
|
||||
intro x hx
|
||||
simp at hx
|
||||
obtain ⟨s, h₁s, h₂s, h₃s⟩ := HolomorphicAt_iff.1 hx
|
||||
use s
|
||||
constructor
|
||||
· simp
|
||||
constructor
|
||||
· exact h₁s
|
||||
· intro x hx
|
||||
simp
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds h₁s hx
|
||||
· exact h₃s
|
||||
· exact h₂s
|
||||
|
||||
|
||||
theorem HolomorphicAt_comp
|
||||
{g : E → F}
|
||||
{f : F → G}
|
||||
{z : E}
|
||||
(hf : HolomorphicAt f (g z))
|
||||
(hg : HolomorphicAt g z) :
|
||||
HolomorphicAt (f ∘ g) z := by
|
||||
obtain ⟨UE, h₁UE, h₂UE⟩ := hg
|
||||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||||
use UE ∩ g⁻¹' UF
|
||||
constructor
|
||||
· simp
|
||||
constructor
|
||||
· assumption
|
||||
· apply ContinuousAt.preimage_mem_nhds
|
||||
apply (h₂UE z (mem_of_mem_nhds h₁UE)).continuousAt
|
||||
assumption
|
||||
· intro x hx
|
||||
apply DifferentiableAt.comp
|
||||
apply h₂UF
|
||||
exact hx.2
|
||||
apply h₂UE
|
||||
exact hx.1
|
||||
|
||||
|
||||
theorem HolomorphicAt_neg
|
||||
{f : E → F}
|
||||
{z : E}
|
||||
(hf : HolomorphicAt f z) :
|
||||
HolomorphicAt (-f) z := by
|
||||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||||
use UF
|
||||
constructor
|
||||
· assumption
|
||||
· intro z hz
|
||||
apply differentiableAt_neg_iff.mp
|
||||
simp
|
||||
exact h₂UF z hz
|
||||
|
||||
|
||||
theorem HolomorphicAt_contDiffAt
|
||||
[CompleteSpace F]
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(hf : HolomorphicAt f z) :
|
||||
ContDiffAt ℝ 2 f z := by
|
||||
|
||||
let t := {x | HolomorphicAt f x}
|
||||
have ht : IsOpen t := HolomorphicAt_isOpen f
|
||||
have hz : z ∈ t := by exact hf
|
||||
|
||||
-- ContDiffAt ℝ 2 f z
|
||||
apply ContDiffOn.contDiffAt _ ((IsOpen.mem_nhds_iff ht).2 hz)
|
||||
suffices h : ContDiffOn ℂ 2 f t from by
|
||||
apply ContDiffOn.restrict_scalars ℝ h
|
||||
apply DifferentiableOn.contDiffOn _ ht
|
||||
intro w hw
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
exact HolomorphicAt_differentiableAt hw
|
||||
|
||||
|
||||
theorem CauchyRiemann'₅
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(h : DifferentiableAt ℂ f z) :
|
||||
partialDeriv ℝ Complex.I f z = Complex.I • partialDeriv ℝ 1 f z := by
|
||||
unfold partialDeriv
|
||||
|
||||
conv =>
|
||||
left
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||
simp
|
||||
|
||||
theorem CauchyRiemann'₆
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
(h : HolomorphicAt f z) :
|
||||
partialDeriv ℝ Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv ℝ 1 f := by
|
||||
|
||||
obtain ⟨s, h₁s, hz, h₂f⟩ := HolomorphicAt_iff.1 h
|
||||
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use s
|
||||
constructor
|
||||
· exact IsOpen.mem_nhds h₁s hz
|
||||
· intro w hw
|
||||
apply CauchyRiemann'₅
|
||||
exact h₂f w hw
|
171
Nevanlinna/leftovers/holomorphic_zero.lean
Normal file
171
Nevanlinna/leftovers/holomorphic_zero.lean
Normal file
@ -0,0 +1,171 @@
|
||||
import Init.Classical
|
||||
import Mathlib.Analysis.Analytic.Meromorphic
|
||||
import Mathlib.Topology.ContinuousOn
|
||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||||
import Nevanlinna.leftovers.holomorphic
|
||||
import Nevanlinna.leftovers.analyticOnNhd_zeroSet
|
||||
|
||||
|
||||
noncomputable def zeroDivisor
|
||||
(f : ℂ → ℂ) :
|
||||
ℂ → ℕ := by
|
||||
intro z
|
||||
by_cases hf : AnalyticAt ℂ f z
|
||||
· exact hf.order.toNat
|
||||
· exact 0
|
||||
|
||||
|
||||
theorem analyticAtZeroDivisorSupport
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : z ∈ Function.support (zeroDivisor f)) :
|
||||
AnalyticAt ℂ f z := by
|
||||
|
||||
by_contra h₁f
|
||||
simp at h
|
||||
dsimp [zeroDivisor] at h
|
||||
simp [h₁f] at h
|
||||
|
||||
|
||||
theorem zeroDivisor_eq_ord_AtZeroDivisorSupport
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : z ∈ Function.support (zeroDivisor f)) :
|
||||
zeroDivisor f z = (analyticAtZeroDivisorSupport h).order.toNat := by
|
||||
|
||||
unfold zeroDivisor
|
||||
simp [analyticAtZeroDivisorSupport h]
|
||||
|
||||
|
||||
|
||||
lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by
|
||||
constructor
|
||||
· intro H₁
|
||||
rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists]
|
||||
by_contra H₂
|
||||
rw [H₂] at H₁
|
||||
simp at H₁
|
||||
· intro H
|
||||
obtain ⟨m, hm⟩ := H
|
||||
rw [← hm]
|
||||
simp
|
||||
|
||||
|
||||
lemma natural_if_toNatNeZero {n : ℕ∞} : n.toNat ≠ 0 → ∃ m : ℕ, m = n := by
|
||||
rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists]
|
||||
contrapose; simp; tauto
|
||||
|
||||
|
||||
theorem zeroDivisor_localDescription
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(h : z₀ ∈ Function.support (zeroDivisor f)) :
|
||||
∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ (zeroDivisor f z₀) • g z := by
|
||||
|
||||
have A : zeroDivisor f ↑z₀ ≠ 0 := by exact h
|
||||
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport h
|
||||
rw [B] at A
|
||||
have C := natural_if_toNatNeZero A
|
||||
obtain ⟨m, hm⟩ := C
|
||||
have h₂m : m ≠ 0 := by
|
||||
rw [← hm] at A
|
||||
simp at A
|
||||
assumption
|
||||
rw [eq_comm] at hm
|
||||
let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport h) m
|
||||
let F := hm
|
||||
rw [E] at F
|
||||
|
||||
have : m = zeroDivisor f z₀ := by
|
||||
rw [B, hm]
|
||||
simp
|
||||
rwa [this] at F
|
||||
|
||||
|
||||
theorem zeroDivisor_zeroSet
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(h : z₀ ∈ Function.support (zeroDivisor f)) :
|
||||
f z₀ = 0 := by
|
||||
obtain ⟨g, _, _, h₃⟩ := zeroDivisor_localDescription h
|
||||
rw [Filter.Eventually.self_of_nhds h₃]
|
||||
simp
|
||||
left
|
||||
exact h
|
||||
|
||||
|
||||
theorem zeroDivisor_support_iff
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ} :
|
||||
z₀ ∈ Function.support (zeroDivisor f) ↔
|
||||
f z₀ = 0 ∧
|
||||
AnalyticAt ℂ f z₀ ∧
|
||||
∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ (zeroDivisor f z₀) • g z := by
|
||||
constructor
|
||||
· intro hz
|
||||
constructor
|
||||
· exact zeroDivisor_zeroSet hz
|
||||
· constructor
|
||||
· exact analyticAtZeroDivisorSupport hz
|
||||
· exact zeroDivisor_localDescription hz
|
||||
· intro ⟨h₁, h₂, h₃⟩
|
||||
have : zeroDivisor f z₀ = (h₂.order).toNat := by
|
||||
unfold zeroDivisor
|
||||
simp [h₂]
|
||||
simp [this]
|
||||
simp [(h₂.order_eq_nat_iff (zeroDivisor f z₀)).2 h₃]
|
||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h₃
|
||||
rw [Filter.Eventually.self_of_nhds h₃g] at h₁
|
||||
simp [h₂g] at h₁
|
||||
assumption
|
||||
|
||||
|
||||
theorem topOnPreconnected
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOnNhd ℂ f U)
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||
∀ (hz : z ∈ U), (h₁f z hz).order ≠ ⊤ := by
|
||||
|
||||
by_contra H
|
||||
push_neg at H
|
||||
obtain ⟨z', hz'⟩ := H
|
||||
rw [AnalyticAt.order_eq_top_iff] at hz'
|
||||
rw [← AnalyticAt.frequently_zero_iff_eventually_zero (h₁f z z')] at hz'
|
||||
have A := AnalyticOnNhd.eqOn_zero_of_preconnected_of_frequently_eq_zero h₁f hU z' hz'
|
||||
tauto
|
||||
|
||||
|
||||
theorem supportZeroSet
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(hU : IsPreconnected U)
|
||||
(h₁f : AnalyticOnNhd ℂ f U)
|
||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||
U ∩ Function.support (zeroDivisor f) = U ∩ f⁻¹' {0} := by
|
||||
|
||||
ext x
|
||||
constructor
|
||||
· intro hx
|
||||
constructor
|
||||
· exact hx.1
|
||||
exact zeroDivisor_zeroSet hx.2
|
||||
· simp
|
||||
intro h₁x h₂x
|
||||
constructor
|
||||
· exact h₁x
|
||||
· let A := zeroDivisor_support_iff (f := f) (z₀ := x)
|
||||
simp at A
|
||||
rw [A]
|
||||
constructor
|
||||
· exact h₂x
|
||||
· constructor
|
||||
· exact h₁f x h₁x
|
||||
· have B := AnalyticAt.order_eq_nat_iff (h₁f x h₁x) (zeroDivisor f x)
|
||||
simp at B
|
||||
rw [← B]
|
||||
dsimp [zeroDivisor]
|
||||
simp [h₁f x h₁x]
|
||||
refine Eq.symm (ENat.coe_toNat ?h.mpr.right.right.right.a)
|
||||
exact topOnPreconnected hU h₁f h₂f h₁x
|
65
Nevanlinna/leftovers/specialFunctions_Integral_log.lean
Normal file
65
Nevanlinna/leftovers/specialFunctions_Integral_log.lean
Normal file
@ -0,0 +1,65 @@
|
||||
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||
import Mathlib.MeasureTheory.Measure.Restrict
|
||||
|
||||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
-- The following theorem was suggested by Gareth Ma on Zulip
|
||||
|
||||
|
||||
theorem logInt
|
||||
{t : ℝ}
|
||||
(ht : 0 < t) :
|
||||
∫ x in (0 : ℝ)..t, log x = t * log t - t := by
|
||||
rw [← integral_add_adjacent_intervals (b := 1)]
|
||||
trans (-1) + (t * log t - t + 1)
|
||||
· congr
|
||||
· -- ∫ x in 0..1, log x = -1, same proof as before
|
||||
rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)]
|
||||
· simp
|
||||
· simp
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1
|
||||
norm_num
|
||||
· rw [← neg_neg log]
|
||||
apply IntervalIntegrable.neg
|
||||
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||||
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||||
norm_num
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||||
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||||
· have := tendsto_log_mul_rpow_nhds_zero zero_lt_one
|
||||
simp_rw [rpow_one, mul_comm] at this
|
||||
-- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace
|
||||
convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id)
|
||||
norm_num
|
||||
· rw [(by simp : -1 = 1 * log 1 - 1)]
|
||||
apply tendsto_nhdsWithin_of_tendsto_nhds
|
||||
exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id
|
||||
· -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos
|
||||
rw [integral_log_of_pos zero_lt_one ht]
|
||||
norm_num
|
||||
· abel
|
||||
· -- log is integrable on [[0, 1]]
|
||||
rw [← neg_neg log]
|
||||
apply IntervalIntegrable.neg
|
||||
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||||
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||||
norm_num
|
||||
· intro x hx
|
||||
norm_num at hx
|
||||
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||||
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||||
· -- log is integrable on [[0, t]]
|
||||
simp [Set.mem_uIcc, ht]
|
Loading…
Reference in New Issue
Block a user