Update complexHarmonic.lean
This commit is contained in:
parent
6061fa4279
commit
631b1bad70
|
@ -39,7 +39,17 @@ theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
· -- Laplace of f is zero
|
· -- Laplace of f is zero
|
||||||
unfold Complex.laplace
|
unfold Complex.laplace
|
||||||
rw [CauchyRiemann₄ h]
|
rw [CauchyRiemann₄ h]
|
||||||
rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
|
||||||
|
let l : ℂ →L[ℝ] ℂ := by
|
||||||
|
--
|
||||||
|
sorry --(fun x ↦ Complex.I • x)
|
||||||
|
have : (Complex.I • Real.partialDeriv 1 f) = (l ∘ (Real.partialDeriv 1 f)) := by
|
||||||
|
sorry
|
||||||
|
rw [this]
|
||||||
|
rw [partialDeriv_compContLin]
|
||||||
|
|
||||||
|
--rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
||||||
|
|
||||||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||||||
rw [CauchyRiemann₄ h]
|
rw [CauchyRiemann₄ h]
|
||||||
rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
||||||
|
|
Loading…
Reference in New Issue