Update laplace.lean
This commit is contained in:
parent
e5f2551482
commit
5e3f9c463f
|
@ -15,6 +15,7 @@ import Nevanlinna.cauchyRiemann
|
||||||
import Nevanlinna.partialDeriv
|
import Nevanlinna.partialDeriv
|
||||||
|
|
||||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||||
|
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||||
|
|
||||||
|
|
||||||
noncomputable def Complex.laplace : (ℂ → F) → (ℂ → F) :=
|
noncomputable def Complex.laplace : (ℂ → F) → (ℂ → F) :=
|
||||||
|
@ -43,7 +44,6 @@ theorem laplace_add {f₁ f₂ : ℂ → F} (h₁ : ContDiff ℝ 2 f₁) (h₂
|
||||||
exact h₂.differentiable one_le_two
|
exact h₂.differentiable one_le_two
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Complex.laplace (v • f) = v • (Complex.laplace f) := by
|
||||||
intro v
|
intro v
|
||||||
unfold Complex.laplace
|
unfold Complex.laplace
|
||||||
|
@ -57,3 +57,18 @@ theorem laplace_smul {f : ℂ → F} (h : ContDiff ℝ 2 f) : ∀ v : ℝ, Compl
|
||||||
exact h.differentiable one_le_two
|
exact h.differentiable one_le_two
|
||||||
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||||
exact h.differentiable one_le_two
|
exact h.differentiable one_le_two
|
||||||
|
|
||||||
|
|
||||||
|
theorem laplace_compContLin {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||||
|
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
|
||||||
|
unfold Complex.laplace
|
||||||
|
rw [partialDeriv_compContLin]
|
||||||
|
rw [partialDeriv_compContLin]
|
||||||
|
rw [partialDeriv_compContLin]
|
||||||
|
rw [partialDeriv_compContLin]
|
||||||
|
simp
|
||||||
|
|
||||||
|
exact (partialDeriv_contDiff ℝ h Complex.I).differentiable le_rfl
|
||||||
|
exact h.differentiable one_le_two
|
||||||
|
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||||
|
exact h.differentiable one_le_two
|
||||||
|
|
Loading…
Reference in New Issue